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Abstract

While increasingly popular, small unmanned aerial vehicles, aka drones, are often flown illegally over outdoor public gatherings
or public facilities like prisons, threatening the safety of those nearby. There is a clear need to address interloping drones in public
spaces from a sociotechnical perspective, including understanding the tradespace of variables. Through surveys, interviews,
technology and infrastructure design, and experimentation, we developed a tradespace model of those variables that managers
and designers of high-risk settings like public spaces and prisons need to consider in their development or renovation. These
include cost considerations, both capital and infrastructure, as well as technology design elements of range and false alarm rates
potentially exacerbated by convolutional neural networks (aka, deep learning). Results also highlight that environmental design
elements can provide a possible low-tech solution in the design of obstructions that either eliminate or complicate a drone pilot’s
line of sight. This effort demonstrates that managers and designers of high-risk settings like public spaces and prisons will have to

balance sometimes competing objectives to obtain the best possible outcomes for public safety.
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1 Introduction

Small unmanned aerial vehicles, otherwise known as drones
or unmanned aerials systems (UAS), are expected to produce
a global commercial market value in excess of US$43 billion
by 2025 [1]. While this growth brings new economic oppor-
tunities, it has also opened the door to illegal uses of drones.
These have ranged from minor in the use of drones to watch
outdoor concerts to major with the use of drones to drop
weapons and cell phones into prison yards. Even in the most
benign of circumstances, flying drones in possibly crowded
venues poses many risks.

Drones flown illegally over outdoor public gatherings
threaten the safety of the public as well as operations of those
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legitimate aircraft that support such events. Novice pilots of
drones operating illegally in these settings increase the risk of
either a crash into another legitimate drone or loss of control of
the drone due to inexperience, potentially resulting in a crash
with people or property. Incidents have already occurred in-
volving drones at music events [2, 3], sporting events [4],
street markets [5], and even at the White House [6].
Moreover, the use of drones to drop contraband into prisons
is increasing with potential grave consequences [7].

Given the rise of such issues, it has become critical for
managers and designers of high-risk settings like public
spaces and prisons to consider how drones could become a
problem in such environments. Unlike major facilities such as
airports with large budgets to develop defensive capabilities,
these smaller venues have very limited budgets and staff to
dedicate to protection.

Because of this increasing threat of drones in the public
domain, there has been increasing research in counter-UAS.
The bulk of these efforts focus on the use of expensive radio
frequency (RF), radar, and electro-optical systems for detec-
tion, with one government report listing the cost to be more
than $100,000 for 63 % of commercially-available systems

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01524-w&domain=pdf
http://orcid.org/0000-0003-2557-6930
mailto:m.cummings@duke.edu

69  Page 2of 12

J Intell Robot Syst (2021) 103:69

[8]. Cost, including infrastructure costs, has been cited as a
major detriment in the installation of counter-drone technolo-
gies, as well as the ill-defined legal landscape of using any
active energy-emitting devices [9].

To address these problems, we developed a multidisciplin-
ary collaboration to examine what interventions could be de-
signed to support such high-risk venues in inhibiting prank-
sters and malicious users, including identifying cost-effective
technologies with low operational overhead. To this end, this
paper integrates results from previous lower-level drone ex-
periments [10, 11] with new human performance results, de-
sign elements and feedback from both drone operators and the
public to develop a tradespace model for managers and de-
signers of high-risk settings like public spaces and prisons
who want to develop solutions for defending against rogue
drones.

Risk perceptions of both drone pilots and the general public
were used to design prototype deterrence and detection tech-
nology solutions and landscape architecture design solutions
that could fill the need for deterring rogue drone operations.
We then highlight how such solutions should be flexible and
adaptable across different environments, and conclude with a
discussion of the tradespace that emerged from this research
effort.

2 Background Information
2.1 Detecting Drones

There exist numerous proposed approaches to the detection of
unmanned aerial vehicles (UAVs), including the detection of
drone radio frequency signals and acoustic signals, as well as
the use of camera vision and RADAR systems [12]. There are
two main aspects in dealing with drones that could be illegally
operating in and around areas of high risk: (1) Deploying
countermeasures to prevent and deter illegal activity, and (2)
Detecting rogue drones that exist within the airspace of inter-
est. These two approaches are inextricably linked to how
drones function, their capabilities, and the properties of the
venue and surrounding environment, which are explored more
in the following section.

Current methods to deter and stop illegal drone operations,
also known as counter-UAS can generally be divided into
three main categories: (1) Regulations and standards, (2)
Active controls, and (3) Passive mitigations [13].
Regulations and standards focus on the long-term ability of
national and local governments as well as industry and pro-
fessional organizations to set rules and guidelines around the
operation of drones in order to promote deterrence of unwant-
ed drones. Examples include the Federal Aviation
Administration (FAA) mandate for registration and labeling
of drones [14] or manufacturer policies for including software
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that forces drones to adhere to safe flying practices, such as
geo-fencing.

Geo-fences are invisible barriers that define boundaries in
the onboard software, within which the drone cannot fly.
While such regulations and standards can be useful long-
term strategies for stopping some accidental drone incursions,
they can easily be ignored by custom drone builders with
prankster or malicious intent. Indeed, in the previously-
mentioned survey of drone operators, 73 % said they had
some knowledge of how to build and program drones, and
the Internet hosts many websites instructing people how to
disable such restrictions.

Active drone countermeasures are those that attempt to
interfere with the function of a drone in real time in order to
physically stop it from continuing flight. Such active counter-
measures fall under three main categories: electronic (includ-
ing jamming, hacking, and spoofing), kinetic (such as guns or
mobile nets), and energy (such as lasers and electromagnetic
pulse). Active countermeasures carry the possibility that a
drone could be brought down in an uncontrolled manner, so
are closely regulated by government agencies like the Federal
Aviation Administration or Department of Homeland Security
and may be illegal [15]. However, detecting a drone with
RADAR is expensive and ineffective in detecting small
drones [8], and visibility can significantly limit optical sensing
techniques [9]. In addition, such active countermeasures carry
significant expense not only in the acquisition of the system,
but also the need to train, both initially and in refresher
courses, operators who require a relatively high degree of
expertise [16].

Passive countermeasures are those that do not target a spe-
cific drone, but instead attempt to diffuse the threat by other
means. Examples include building infrastructure to block the
views of the onboard drone cameras or through the use of
camouflage like nets, which has long been a military staple
of passive defense from aerial threats. Passive mitigations are
advantageous in that they do not require expensive technology
or training, do not increase the risk of causing a drone to fall
out of the sky, and can be flexible to accommodate the various
environments. However, passive countermeasures like nets
may be infeasible in areas like botanical gardens that place
high value on aesthetic appeal, and such interventions may
also carry more costs than organizations are willing to spend.

Some companies have designed multi-faceted detection
solutions that incorporate combined detection approaches
but it is generally agreed that there is no current solution that
can detect all drones with perfect accuracy [12, 17]. Moreover,
such approaches only increase the complexity and cost of
owning and operating these systems, which is substantial
[18]. In this effort, we explored the use of such passive coun-
termeasures through applications of landscape architecture
survey and design methods to determine if and how such
techniques could be effectively leveraged.
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2.2 Understanding the Problem

While managers of high-risk spaces see rogue drones as a
liability source, we wanted to get a sense of to what degree
and why the general public views small, commercially-
available drones as sources of risk (as opposed to military
drones). Threats to privacy from commercially-operated
drones have been a consistent significant concern for the gen-
eral public [19, 20]. Safety has been a lesser concern with only
38 % of respondents in a 2013 survey concerned about safety
[20], with nearly identical numbers in a 2019 study [19].

To determine how those opinions from people who fre-
quent a small outdoor venue like botanical gardens compared
to the earlier general public opinions, we conducted a survey
of 145 people at the Sarah P. Duke Gardens in March of
2018 at approximately midday. A little more than half of re-
spondents were female (51 %), with 55 % in the 21-40 yr. age
group and 20 % in the 41-60 yr. group. Garden visitors were
largely educated (76 % were college graduates) and 88 %
reported that they were familiar with drones.

If respondents saw a drone while visiting the Gardens, 24
% reported they would definitely be concerned, while 35 %
reported that they might be. Unlike previous studies where
privacy was the major concern, this group reported their most
significant concern in seeing a drone flying around the
Gardens would be not knowing the intent of the pilot (50
%). The possible invasion of privacy was their second highest
concern (39 %). In contrast, a 2019 study reported that 71 %
of people were concerned about their privacy [19]. For the
most part, this group of visitors reported that they would likely
do nothing if they saw a drone flying around during their visit
(55 %), while 24 % reported that they would move away from
the drone. In general, it appears that this group of visitors
generally see drones in the environment as more disruptive
than as a threat to their safety.

These results are interesting in that while managers of the
Gardens see rogue drones as a safety threat, their visitors may
be somewhat ambivalent. This group of visitors was not par-
ticularly concerned with potentially unsafe drones or privacy
violations. When asked whether such environments should be
designed to deter rogue drones, only 40 % agreed. These
visitors overwhelmingly placed aesthetics as their most impor-
tant attribute of the Gardens (91 %), with safety, curiously, as
their second (89 %). Privacy was the lowest ranked attribute
with only 42 % of respondents reporting this as an important
value.

While these results are informative in terms of how poten-
tial visitors to places like botanical gardens view drones from
a safety and privacy perspective, understanding how drone
pilots view such issues complements these insights. To this
end, a group of 41 commercially-certified drone pilots were
surveyed at a drone trade conference, also in 2018. One inter-
viewer asked 22 questions, and recorded answers on a tablet

which were either multiple-choice (e.g., In which types of
areas do you prefer to use your drone? (‘“Please tell me all that
apply”)or ranked data on a Likert scale (e.g., Please state your
level of agreement with the following statement: Drones are
safe to use in public spaces.)

This group also was well-educated (76 % had a college
degree or more) with 66 % in the 21-40 yr. age group and
27 % in the 41-60 yr. group. This sample was predominantly
male (88 %), the majority of whom flew either weekly (46 %)
or daily (22 %). Most (80 %) preferred line-of-sight control
within a mile of their physical location, and 90 % said battery
was their most important system concern.

When asked where they preferred to fly, 68 % reported
flying in an open field and the goal of 66 % of respondents
was to take videos and pictures of areas, objects and people of
interest. Indeed, 27 % said they like to use their drones to
observe social events, festivals, and games, which aligns with
venue managers’ concerns for public safety. The surveyed
drone pilots overwhelmingly (71 %) felt that flights in public
spaces were safe (Fig. 1), but interestingly, 68 % agreed that
the public could be harmed by such operations.

Perhaps the most striking aspect of Fig. 1 is that while two-
thirds of drone pilots recognize the danger to the public when
they elect to fly in these settings, only one-third of the public
(38 %) understands these risks. This difference in risk percep-
tion where pilots see more risk than does the public has also
been noted in another study [21]. Such differences suggest
that there are increased safety risks to the public given that
the pilots have the expertise to recognize the danger, but the
surveyed visitors’ perceptions of risk are not calibrated to
reality. These results, which are admittedly based on a small
sample, further underscore that managers of outdoor venues
have reason to be concerned for public safety and that it could
be beneficial to them to deter conducting illegal drone opera-
tions in their areas.

2.3 The Need for a Tradespace Framework

In the development of systems with multiple stakeholders and
multiple competing objectives, tradespace frameworks are
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Fig. 1 Drone pilot and botanical garden visitor views on safety of drones
flying in public spaces
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critical in helping decision makers understand the key attri-
butes that need to be considered, particularly when evaluating
alternatives [22]. While there have been a few efforts formally
examining the tradespace of unmanned aerial vehicle design,
they have focused primarily on military systems [23], or low-
level details like the optimal wingspans and engine types [24].
To date, there has been no published research developing or
analyzing the tradespace for defending against possible drone
incursions, especially those in civilian settings where costs
and labor are especially limited.

To develop such a tradespace, we used our knowledge
gained through stakeholder interviews to develop a low-cost,
easy-to-use drone detection system and then experimented
with this system to determine the critical performance ele-
ments, as well as how such systems could or should be
installed in representative settings. The next section discusses
the initial design as well as those iterations required to achieve
basic functionality.

3 System Design

Interviews with local outdoor venue managers as well as pris-
on officials revealed that such agencies would only like to
spend approximately $1,000 on such a system, with little-to-
no cost for monitoring and operations. Given this small bud-
get, we initially elected to focus on acoustic detection systems,
which are not only relatively cheaper but also could be more
widely adapted to different settings.

Acoustic detection is a passive sensing approach to drone
detection which involves analyzing patterns of wave energy
produced by an oscillating body through distinguishing pres-
sure fluctuations between two signals [25]. Acoustic detection
is advantageous since signals are typically omnidirectional,
and greater coverage is easier to achieve with a smaller sensor
footprint as compared to other modalities. Analyzing sound
pressure levels and spectral peak frequencies over time can
detect aerial vehicles [25, 26]. Such approaches include
pattern-matching through some kind of machine learning ap-
proach, which requires that a drone’s acoustic signature must
be known a priori to train the algorithm.

Our initial approach leveraged a discriminative statistical
machine learning technique called Support Vector Machines
(SVM) for classification. An SVM is a lightweight, stable and
computationally inexpensive alternative for neural networks
[27]. To build an SVM, we needed data from drones actually
flying in order to extract features. To this end, we built a
library1 of more than 10,000 drone sounds from DIJI
Phantom4, DJI Inspire2 and 3DR Iris drones flying at various
known ranges using a microphone connected to a low-cost
($55) micro-computer (a Raspberry Pi). Then we used Mel-

! https://sites.duke.edu/prisdatabase/.
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frequency cepstral coefficients (MFCCs), spectrogram,
chromagram, spectral contrast and tonal centroids (tonnetz)
as features.

With an 80 % accuracy rate in controlled settings against
three different drones, the initial results were encouraging.
However, in follow-on live flight tests, the accuracy dropped
to about 60 % accuracy at a range of 50-60 m. There were also
a high number of false alarms when the system was exposed to
lawn equipment, life leaf blowers, and weed eaters [10]. This
made it clear that our approach was not robust enough for
actual deployment.

In the second iteration of the design, we expanded the
dataset to include many more instances of lawn equipment
as well as more drone sound signatures. Instead of an
SVM, we used a convolutional neural net (CNN) with a
six-convolution layer approach with a reduction in the
number of features used as in the SVM. Only MFCCs
were used as features in the CNN algorithm. More details
about this approach can be found in [11], but in similar
test scenarios to that of the SVM, the CNN’s accuracy
ranged from 92 % for sounds 30 m away but dropped
to 76 % at 60 m. In comparison, human detection accu-
racy rate at these same ranges was consistently ~92 %
[11]. While an improvement over the SVM, false alarms
were still a problem with an average of 72 false alarms a
day over a 17-day period.

The high false alarm rate did not substantially improve
when we switched from an SVM to a CNN classification
approach and added more training data. This indicated that
we needed a new approach to mitigating false alarms. To that
end, we elected to add a radio frequency (RF) detector ($158)
to the system to detect the 2.4 GHz and 5.8 GHz frequency
range, which is the range used by small drones to transmit
video. Most operators illegally flying drones (but not all) use
the onboard camera for navigation and precise payload place-
ment (like contraband). Thus, we developed a fused sensing
approach such that the system would passively detect an RF
signal and then alert officials. In the small chance that an
operator did not use video, the acoustic sensor, provided a
second layer of defense, as illustrated in Fig. 2.

One caveat to this fused approach is that there are likely
other sources of RF in an environment around local outdoor
venues or prisons. Thus, system filters must be updated when-
ever a new, approved RF signal source is installed, such as a
new wi-fi router. In addition, false alarms can still occur with
the second, acoustic layer of defense. However, as will be
discussed in the Threat Communication section, there are
ways to continually improve the system to reduce false
alarms.

The resulting system, called the Fused Acoustic RF System
(FARS) was constructed and installed at the Koka Booth
Amphitheater in Cary, NC (Fig. 3) to determine its effective-
ness both in detecting drones and mitigating false alarms. In
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Fig. 3, FARS is the black box in the left-center and blends in
with the rest of the lighting infrastructure.

Unfortunately, only 17 days after the initial installation, a
hurricane hit the local area, causing the system to fail due to a
faulty power adapter. One important lesson learned in this first
phase was that high winds could cause false alarms for the
acoustic system, so the CNN had to be retrained to reject these
sounds. Once these issues were fixed, the system was installed
and left running for 154 days until the end of the project with
no further system failures. During this period of operation,
there were 0 % false alarms with the RF detector, and an
average of 18.7 acoustic alert false alarms per day. The total
cost of the final sensing unit was $400 (not including solar
power and monthly cell service and data charges).

e~ y & » y i1 $7 3

Fig. 3 The Fused Acoustic RF System (FARS) installed at the Koka
Booth Amphitheater

While detection is a critical element in defending against
rogue drones, alerting relevant officials that potential threats
are nearby is also very important. To this end, the next section
details the mobile alerting system that accompanies the
Sensors.

3.1 Threat Communication

Both the public venue and prison stakeholders agreed that
money would not be available for continuous service and
operational contracts. Thus, we needed to develop an alerting
system for the sensing system that was both low in cost but
also relatively easily accessible with minimal maintenance
needs. Due to the ubiquitous nature of mobile phones and
the relatively low cost of developing associated applications,
we determined that a smartphone-based app(lication) was the
best candidate for communicating a nearby threat detected by
FARS to either venue managers or prison officials in a cost-
effective manner.

Figure 4a illustrates the resulting application, called
the Mobile Alerting Interface (MAI), which can operate
on both Android and Apple phones. MAI is connected
to a remote server that received notifications from the
fused sensing system by a cellular module. It is de-
signed to promote maximum situation awareness (SA),
which is the comprehension of events in an environment
with regard to time and space. There are three levels of
SA: (1) Perceiving a critical situation, (2) Understanding
key elements and events within this situation, and (3)
Projecting the situation into the future to predict how
the situation will unfold [28]. So, in terms of rogue
drone detection for high risk areas, FARS needs to
communicate with users in such a way to allow them
to quickly perceive, understand and develop plans for
possible mitigation.

While more detail about MAI’s design and evaluation
can be found in [29], as seen In Fig. 4a, the primary
display that leverages native maps indicates where the
threat was likely detected and which sensor detected the
target, which allows users to perceive and understand
what is happening. The additional critical element is the
confidence interval that accompanies any alert, which is
critical in calibrating user trust and especially important in
the presence of fused sensor data [30]. The confidence
estimate, either medium or high confidence, is based on
the number of ‘drone detected’ predictions in a 10 s audio
clip (a total of five samples).

In addition to the confidence interval which helps users
understand the likelihood of an actual threat, if an alert is
triggered by the acoustic detection system, users can also play
back the sound file that caused the alert (Fig. 4b). This real
time feedback is critical since the probability of a false alert
based on acoustic sensing is non-trivial, and allows users to

@ Springer
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Fig. 4 The Mobile Alerting
Interface (MAI), a) Home screen ~ Current Detection Status Sound Check
with a (M)edium confidence
detection and b) Sound file AHome EHistory £ Settings e sEiisE i
presented to user > e S € audio drone sound?
Map Satellite > 0:00/0:10 @ L DI

act as an additional sensor to screen the signal. If it is suspi-
cious, then management can investigate in a timely fashion. If
not, the app allows the user to immediately label the sound,
which humans are very adept at doing [11]. This feedback is
archived through the History function and could be used in
future updates to the system, which is addressed further in the
discussion section.

Potential users both in prison facilities and outdoor public
venues were very receptive to MAI, even though there could
potentially be multiple false alarms in a relatively short period
[29]. Users reported that even if 1 in 5 alerts was a false alarm,
they would consider such a system to be extremely effective.
Moreover, they did not complain about requests for data la-
belling. To the contrary, users appreciated having input to the
system and liked the teaming aspect.

Technology that appears to be augmenting humans as
opposed to replacing them is often seen in a more favor-
able light [31], so this is likely an important design con-
sideration in environments where technology may be
distrusted. One caveat to this is that our partners were
never tasked to assist with labeling more than a few weeks
at a time, so a longer-term study is needed to determine if
and when users become frustrated with data labelling in
addition to other duties.

@ Springer

3.2 Camouflaging the Detector

While MAI and FARS address the detection piece of
defending against rogue drones, one aspect of this technology
piece is that, as seen in Fig. 3, FARS nested inside a black box
is not particularly aesthetically pleasing. It blended in with
other supporting lights and cords at the Koka Booth amphi-
theater but other partners like the Sarah P. Duke Gardens who
place high value on visual aesthetics balk at installing such
devices that may take away from the desired experience.

The physical form of such a device can even be a problem
in places like prisons that may not seem to place a high value
on visual aesthetics. The prison staff warned us that if we
installed any device in a tree or on a pole that looked like a
surveillance device, it would be shot down, especially if
placed near the edge of the prison’s property, which is where
such devices need to be placed for maximum detection range.

Understanding that a listening device is better suited higher
up to extend its vertical and horizontal range, and that some
agencies care about the look of the physical form, we deter-
mined that one possible camouflage technique would be to
hide FARS in an artificial bird’s nest. Such a nest is common
in the southeast and could accommodate a solar panel if a
power source was not available or accessible.
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To build such a device, first an artificial nest was designed
to closely approximate a Red-tailed hawk’s nest. As seen in
Fig. 5a, this first nest was used as a prototype because: a) they
are typically found in large trees in North Carolina 13 - 69 ft
above the ground with good solar access; b) their variety in
construction and vegetative materials enabled fast prototyping
with material found in situ; and c) typical Red-tail hawk nest
dimensions offer ample opportunity to conceal embedded
equipment like batteries or a solar panel (generally 28” to
38” in diameter and up to 38" tall).

Construction and vegetative materials including twigs
and branches, pine needles, and leaf detritus were gath-
ered at the experimental site and transported to assembly
areas. The nest in Fig. 5a was modelled using construc-
tion adhesives and traditional “wood weaving” techniques
with a 34”outside diameter. Because the woven wood and
glued nest configurations occasionally lost structural in-
tegrity under routine transportation and handling, the ar-
tificial nest also contained a camouflaged superstructure
to hold the materials together.

A Lexan prototype superstructure was fabricated using
split trusses assembled with Lexan adhesive and configured
in a 3.5” on-center interlocking grid. The gridded trusses
interlocked through paired notches at intersection points.
The initial prototype was fastened with additional 4 plastic
snap ties to secure the woven wood camouflage. The Lexan
superstructure was coated with a matt finish acrylic to reduce
potential Lexan reflectivity, which might appear “unnatural”
in a forest setting.

Fig. 5 Artificial Nest Evolution
(Photographer: Bill Snead). a
Artificial nest with actual
materials. b Original 3D-printed
nest. ¢ Camouflaged 3D-printed
nest. d 3D-printed nest in situ

a Artificial nest with actual materials

¢ Camouflaged 3D-printed nest d

While this initial nest in Fig. 5a was very realistic, it
was relatively heavy (17.6 kg). The organic material in
the form of sticks, twigs and pinecones significantly con-
tributed to the nest’s realistic look, but this material
quickly decomposed and required continued restoration
once deployed. To combat the weight and decomposition
issues, we then adapted the initial design to a digital for-
mat, including scanning real branches and twigs, and then
printed the nest with several 3D printers. Because the
design took several different printers, the initial 3D-
printed nest resembled a rainbow (Fig. 5b), and then
was painted with camouflage colors (Fig. 5¢). The weight
of the 3D-printed nest was much lighter (3.48 kg) and
could be more easily mounted higher up in a tree
(Fig. 5d). Moreover, given that the nest is plastic, it will
last much longer than any nest made of organic materials.

Stakeholders were impressed with the final outcomes
and given that the total cost of the printed nest was $31, it
represents a relatively low-cost solution to blending tech-
nology into the environment that FARS protects. Indeed,
while the groundskeepers at the Duke Gardens were ini-
tially wary of our approach, citing the ugliness of cell
phone towers made to look like evergreens, they were
very impressed with the artistic approach in creating an
artificial nest. Given the ubiquity of 3D printers, grounds-
keepers or prison officials could easily modify or create
and print their own designs to house such technology,
providing flexibility in developing infrastructure in a
low-cost manner.

S\

3D-printed nest in situ
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4 Designing for Deterrence

While FARS and any containment unit built to hide such a
device are the critical technology elements needed for a viable
detection system, designing for deterrence is equally impor-
tant. If operators of rogue drones struggle to achieve their
goals, such increased difficulty may be enough of a deterrent
in either beginning or continuing an illegal effort. While we
examined many possible interventions to make flying drones
difficult in a particular area, including directed lights and fog
misters to blind onboard cameras and thermal devices to de-
tect drone operators, all of these potential solutions well ex-
ceed the cost threshold for both outdoor venues and prisons.

Given that active interventions to rogue drone deterrence
would be cost prohibitive, we then examined methods for
passive deterrence. Most commercially-available drones only
have approximately 30 min of flight time, which is directly
affected by any additional weight due to a payload. Thus, most
pilots need to be close to their area of interest, especially if
they want to drop a package.

This desire for typical drone pilots to be near their area of
operation was also confirmed by the venue public managers
and prison staff, who noted either finding culprits or evidence
of their activity nearby. Moreover, drones that crash near
prisons contain forensic data [32, 33], which often show that
the pilot was relatively close to drop zone. While it is possible
for people to remotely command a drone from miles away
using the onboard camera and a ground control station (called
beyond-line-of-sight control), such skill levels are difficult to
achieve. Most people need to actually see a drone, even if only
from a distance, while also looking at the video camera to
precisely control it, especially to drop contraband.

The key insight is then understanding that one major source
of deterrence could be making it difficult for operators of
rogue drones to achieve their desired lines of sight.
Camouflaging nets is a low-cost passive aerial countermea-
sure military staple, which could easily be adapted to prevent
rogue drone pilots from achieving their desired top-down
views through the onboard camera. However, managers of
venues like botanical gardens are not likely going to adapt
such a measure, especially when surveys like ours reveal that
the aesthetic experience is the most important characteristic to
visitors. Even prisons balk at such ideas since guards need a
clear view of prisoners in the outdoor yards and camouflaging
nets would occlude such views.

Instead of disrupting the top-down views from the onboard
camera, it is possible to disrupt the view of the pilot attempting
to watch a drone in flight for more precise control. One natural
way to block people’s lines of sight in controlling rogue
drones is to grow trees, where leaves and branches provide
some protection against top-down views, and they also act as
deterrent since they often present many difficult navigation
challenges. While such interventions have many aesthetic
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and practical benefits, not the least of which is cost, they can
take quite a long time to reach maturity. Moreover, for some
venues that need relatively wide-open spaces for flexible uses,
growing clusters of trees is not a viable solution.

For those venues that want to deter rogue drone operations
without the time and resources to grow trees, there is another
low-cost solution. Figure 6 illustrates the use of outdoor
screens as a possible cheap and flexible deterrent to such op-
erations. The shaded area in Fig. 6a represents an area near a
prison where significant illegal activity has taken place in the
past. This area is on private property so prison officials have
no control over it, and is a likely hot spot for illegal activity
due to its close proximity to the prison and a nearby road that
enables fast escape. Operators of rogue drones prefer to stand
at the edge of the tree line on the private property so they have

PN et
1000ft

a Overhead photo of prison grounds, outlined by
the dotted line. Most likely infiltration area is
shaded in grey and the proposed screen is
between it and the prison.

b  Ground view of the proposed screen

Fig. 6 Possible deterrence screening. a Overhead photo of prison
grounds, outlined by the dotted line. Most likely infiltration area is
shaded in grey and the proposed screen is between it and the prison.
b Ground view of the proposed screen
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a clear line of sight into the prison yard and they can hide in
the woods if spotted.

To disrupt the views of a person standing in this area, the
prison can install a set of screens that obscures the view so the
pilot cannot tell where the drone is in flight, particularly in the
drop area. Understanding where these drop areas are, the line
of screens in Fig. 6a was designed to maximize obscuration of
aperson standing at the tree line at roughly 750 ft from the tree
line at a height of 20 ft. As illustrated in Fig. 6b, the screen
material is only used from 10 to 20 ft high, with the area from
the ground to 10 ft clear so that prison officials can at least
partially see is someone is running either through or behind
the screens.

The screen sections can either be supported by steel or
wood poles. At a cost of $34.99 per roll (20” x 50°), this is a
low-cost deterrence mechanism that could either be relatively
easily relocated or a new section installed should a new area
become a vulnerability. The design in Fig. 6 is just an illus-
tration of how interference in a drone operator’s line of sight
could be addressed and such a solution would not be a likely
candidate for venues that place high value on aesthetics.
However, for temporary outdoor gatherings like festivals,
such a solution may provide needed flexibility.

5 Discussion

Figure 7 summarizes the tradespace that emerged from the
technical and social aspects of this effort in determining how
to support managers of high-risk venues in inhibiting rogue
drone flights. It captures cost variables (gray), technical vari-
ables (blue) and also physical design considerations (purple).
At the center of Fig. 7 is the need to consider the severity of
consequences for a possible drone incursion. While risk of
harm to the public viewing an outdoor concert is concerning
if a rogue drone attempts to also watch the concert, risk of

Operational
cost

Mobility Capital cost

Severity

of
intrusion

Detector
appearance

False alarms

Range

Fig. 7 Tradespace for drone incursion defense

harm to prison staff and other inmates is substantially higher if
a gun or knife is dropped into a prison yard.

The two cost variables, capital and operational costs, rep-
resent real world constraints that likely drive the final selection
of such a system. All stakeholders we spoke to clearly consid-
ered cost the major driver of their decisions to acquire such a
system, and all had very small budgets. As noted in Fig. 7, the
cost of a unit (the capital cost), was only half of the cost
considerations. Operational costs, which include staff for
monitoring, information technology (IT) support, and mainte-
nance, also are important to managers of small venues and
public facilities. FARS was designed to minimize these costs,
however, there would be intermittent needs for IT support, and
maintenance could also be an issue if the nest or screens were
installed.

Range and false alarms represent the technical variables in
this tradespace. It is a significant finding that while a CNN can
perform as well as a human at close ranges (30 m), this per-
formance drops sharply with increasing distance. Such a find-
ing, along with the need to constantly retrain the underlying
neural networks with potentially new threats, suggests that a
collaboration between humans and Al is needed to mitigate
the brittleness of the CNN. This means humans are needed to
assist the algorithm, and given that humans were consistently
92 % effective in their detections, our work-around that al-
lows a human to verify the algorithm’s predictions is clearly
warranted.

While the range of one unit is modest (60-120 m), these
units can be connected in a network, potentially greatly ex-
tending the range of the system. This would, of course, in-
crease both capital and operational costs (the IT and mainte-
nance costs would likely increase), but also increase the per-
formance of the system. Trading performance for cost is com-
mon in such sensor-based systems.

The false alarm variable, while not unique in sensor-based
systems, is one that becomes more prominent whenever a
machine learning algorithm is used. For a high consequence
setting like a prison, staff told us that they would be willing to
accept approximately 1 in 5 false alarms a day, meaning that
only 80 % of alerts had to be correct for them to consider this
to be a useable system. If the underlying training data can
sufficiently represent the breadth of possible sources of acous-
tic false alarms and these can be held to the 1-in-5 threshold
suggested by prison guards, then such systems are viable.

While many prisons are located in rural areas with very
predictable background noise profiles, many are also located
in urban settings with a much more variable set of background
noises. It is not practical nor cost effective for prison staff to
hire a data scientist to continually retrain an acoustic CNN-
based system to detect new noises in the background, so this
represents a significant limitation of this system. Indeed, this
is why we had to augment the acoustic system with an RF
detector.
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Fig.8 Tradespace model application for different dronedetection systems
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These results add to the growing body of literature about
the brittleness of systems with embedded deep learning algo-
rithms. While we were able to methodically improve our sys-
tem by adding more data to the training set for each new
source of a false alarm, such an approach is not scalable for
FARS and likely not scalable for any system that operates in
dynamic settings. While model-free estimators like CNNs can
be useful, this research effort showed that without augmenta-
tion from other sensors and humans, deep learning-generated
predictions were not sufficient. One area of future research
that this effort highlights is the need for automated training
data updates, i.e., as new sources of false alarms are identified,
how to collect human-labeled data and then automatically
train and update a CNN classifier without data scientist
intervention.

The last variable grouping in Fig. 7, the physical con-
siderations, includes mobility and the appearance of a de-
tector. If such a device were to be installed in botanical
garden or other setting that values aesthetics, it will need
to blend in with the environment. Our botanical garden
partners were somewhat reluctant to consider installing a
system like FARS until they saw the nest in Fig. 5. Once
they realized that technology can also become, in effect,
art and part of the landscape, they were overwhelmingly

in support of the system, further highlighting the impor-
tant of interdisciplinary collaborations.

While prison staff do not care about aesthetics to the
same degree as managers of a botanical garden, the ap-
pearance of the detector was a consideration for them in
terms of preventing any kind of sabotage effort. If a de-
tector is in a relatively isolated place without continued
supervision, it is at risk for tampering or destruction so
developing camouflage techniques reflective of the local
biodiversity like that in Fig. 5 will be critical to prevent
such physical attacks.

The mobility issue is another important finding from this
research. Given that many venues may need to better protect
certain areas at different times (like for festivals), and that
operators would likely change the axis of their preferred at-
tacks based on seasonal foliage and other line-of-sight consid-
erations, having the flexibility to move the units as needed,
perhaps in concert with the deterrent screens, may be
desirable.

To illustrate the utility of this model, Fig. 8 demon-
strates how it could be applied to our original acoustic
sensor design, the subsequent FARS design, and also a
typical radar like those that could be used at a regional
airport, another stakeholder that has experienced signif-
icant disruptions due to both intentional and accidental
drone flight incursions. From each of the use cases, the
6 elements of the model are plotted on a Likert scale of
1-5, where the exact categories are defined in Table 1.
Using these scales, Fig. 8 compares cost considerations,
range, appearance (whether in terms of aesthetics or a
need to camouflage), minimizing false alarms and mo-
bility for the three use cases.

The maximum score that represents the ideal use case for a
passive drone detection system that embodies all the attributes
in Fig. 7 is 30. The acoustic-only system use case scored 20,
FARS was 24, and the airport scored 13. As seen in Fig. &,
radars have superior range and fewer false alarm issues, but
they also have much higher capital and operational costs. The
tradespace analysis demonstrates that FARS is a better fit for
smaller venues with restricted budgets and other counter-
drone systems like those that incorporate radar are not good
candidates.

Table 1 Likert scale definitions for the interloping drone attack tradespace
Operational Cost Capital Cost False Alarms Range  Mobility Appearance
1 More than 2 people >$100,000 Multiple daily ~50 ft Cost-prohibitive Too big to conceal
needed per shift
2 people needed per shift ~ >$10,000,<$100,000 One daily ~100 ft  Difficult Requires significant camouflage

1 person needed per shift ~ >$5,000,<$10,000
Intermittent human support >$1,000, <$5,000
<$1,000

w W

No human support Rarely

One every few days
One every few weeks ~1 mi

~2500 ft Requires moderate effort Requires moderate camouflage
Requires some effort Requires some camouflage

~5 mi Easy Blends in with environment
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6 Conclusion

With the rise of popularity in small unmanned aerial vehicles,
aka drones, managers and designers of high-risk settings like
public spaces and prisons are increasingly concerned with
unwanted drone activity, which carries risk of harm to the
public and supporting staff. In a survey of commercial drone
pilots, one-quarter of respondents reported that they intention-
ally wanted to fly in areas that increased public risk. Thus,
there is a need to understand how this problem can be ad-
dressed from a sociotechnical perspective, including what
the tradespace of considerations would be.

Through surveys, interviews, technology and infrastructure
design, and experimentation, we developed a model of those
variables that constitute the tradespace of variables that man-
agers and designers of high-risk settings like public spaces and
prisons would need to consider. These include cost consider-
ations, both capital and infrastructure, the technology design
elements of range and prediction false alarm rates, and envi-
ronmental considerations of aesthetics and possibly
obstructing drone pilot lines of sight.

This analysis highlighted that, from a performance perspec-
tive, detection range will be sacrificed for cost effectiveness.
The venue managers and prison officials in our representative
applications felt that simply knowing a drone was nearby was
the most valuable piece of information, as that knowledge
would then inform an action plan dependent on circum-
stances. So, this trade was acceptable to them, but that might
not be the case in every application. Ultimately any venue or
public facility will have to determine the importance of each
of the variables in Fig. 7 in developing a system that best fits
their needs. By addressing the variables in Fig. 7, groups of
stakeholders can at the very least, understand the space of
possible solutions and where compromises may have to be
made.

This effort further highlighted that when developing tech-
nologies that rely on convolutional neural networks (aka, deep
learning), it is important to note that no solution is foolproof
and false alarms could require additional sensors or human-
based solutions. Moreover, any deterrence methods can only
dissuade or slow down illegal activity so none of the solutions
proposed in this effort can provide protection from rogue
drones in all situations. However, through the lessons learned
and the guidelines set forth in this paper, managers and de-
signers of high-risk settings like public spaces and prisons
now have a roadmap for how to balance often competing
objectives to obtain the best possible outcomes.
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