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Abstract

Human supervisory control (HSC), in which operators indirectly control autonomous sys-

tems by sending and receiving commands, is a commonly-used scheme for various human-

automation interaction scenarios. While many studies have investigated how factors, such

as different levels of autonomy and interface designs, affect operator performance in HSC

scenarios, no previous research has quantitatively evaluated the impact of such factors

on operator strategies. Thus, this research focuses on developing a quantitative metric to

compare strategy models to determine whether changing specific factors in HSC scenarios

would affect operator strategies.

Previous studies have shown that operator strategies can be represented by operator

behavior patterns in conducting tasks and achieving goals. Given that hidden Markov

models (HMMs) can represent operator strategies, researchers can investigate impacts from

technology or process changes on operator strategies by comparing HMM strategy models.

However, no quantitative and systematic HMM strategy model comparison metric has been

proposed. To resolve this problem, this research uses the divergence distance measure to

develop a mesh comparison metric to comprehensively compare strategy models and obtain

quantitative model difference measures.

As a part of the comparison metric, the data quantity requirement for model develop-

ment is determined using a large external dataset from a typical HSC video game. Strategy

models were trained based on different data quantities and then compared to benchmark

models developed from the whole dataset. Comparison results show that a minimum of

30 data sequences can represent the whole population and be effectively used to model

operator strategies. Also, as another part of the metric, an observation alignment approach

is proposed to compare strategy models developed from different HSC scenarios with non-

equivalent training data elements.
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Utilizing this comparison metric, researchers can quantitatively measure differences

between strategy models. However, it is not clear how the magnitude of such comparison

measures maps to meaningful degrees of difference in HSC scenarios. To address this is-

sue, an initial baseline of strategy difference comparisons was established by comparing

strategy models developed from human-subject experiment sessions. Then, a continuum

of comparisons was generated to provide references for the magnitude of impacts from

different factors on operator strategies. Thus, researchers can apply changes in HSC sce-

narios and evaluate the impacts from such changes on operator strategies by measuring

differences between strategy models and referring to comparison baselines.

In summary, the contributions of this dissertation include 1) proposing an operator

strategy model comparison metric to quantitatively measure differences between operator

strategies modeled from HSC scenarios and 2) establishing strategy model comparison

references across multiple HSC scenarios with varying settings.
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Chapter 1

Introduction

1.1 Motivation

Human-automation interaction (HAI) studies how human operators interact with automa-

tion systems, such as robots and computer interfaces [1, 2, 3]. Specifically, HAI investi-

gates the way humans control, receive information from, and are affected by automation

systems [4]. With the development of automation technologies and artificial intelligence

[5, 6, 7, 8, 9, 10, 11], humans now interact with automation systems with sophistication

and on an increasing scale. While technology advances bring the benefits of increased effi-

ciency and autonomy, achieving optimal outcomes with a highly complex system is not an

easy task. Thus, an increasing number of studies and applications on human-automation

interaction have emerged to address human-automation-related challenges and to improve

the performance of human-in-the-loop systems [1, 2, 12, 13].

One of the most common human-automation interaction scenarios is driving a vehicle

with advanced driver-assistance systems (ADAS). ADAS provides a group of functions in

driving and parking for convenience and increased road safety [14, 15, 16]. In a scenario

with low-level autonomous ADAS, the driver controls important control components, such

as wheels and pedals, while ADAS performs auxiliary functions, such as cruise control and

lane departure warning [17, 18, 19]. In a high-level autonomous ADAS scenario, a human

operator is only asked to take control in case of an emergency [20, 21, 22]. As vehicle

autonomy progresses, HAI studies on ADAS have also evolved quickly. While earlier

work focused on the impact of traditional ADAS functionalities, such as collision warning

on driver’s attention [23], more recent work explores design and safety considerations of

broader interactions between the drivers and the technology [24, 25, 26, 27].
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Another common human-automation interaction scenario is air traffic control [28, 29,

30]. Increased air traffic in the last decades has created significant capacity and safety

problems [31, 29, 32]. A series of solutions have been introduced to provide air traffic

controllers with more accurate aircraft information and improve communications between

pilots and controllers [33, 34, 35]. However, the introduction of such concepts brings a ma-

jor paradigm shift in which autonomous technologies are allowed to perform safety-critical

tasks [36, 37, 38]. Thus, a thorough investigation is required for autonomous system de-

signs as well as human controllers’ operations while interacting with such systems.

In human-automation interaction scenarios, a central role humans undertake is known

as human supervisory control (HSC) [39, 40, 41]. HSC differs from the traditional inter-

actions with tools of no intelligence, during which humans make all decisions and perform

all sensing and control [42]. In HSC, humans remotely and indirectly interact with an

autonomous system through receiving and sending commands to a control interface and

complete high-level tasks through collaborative sensing and decision making [43]. The

HSC control scheme is commonly viewed as a closed-loop process illustrated in Figure

1.1. In this loop, human operators first send control commands to the control interface of

the system, which communicates to a computer, to initiate system interaction with real-

world tasks. Feedback from the tasks will be collected through sensors and transferred

back to the system. The operators will then receive such feedback via displays to infer the

state of the system and make decisions regarding further control actions.

Human supervisory control has been widely used in many applications, including re-

mote drone control, driver and ADAS interaction, and air traffic control [44, 45, 46]. How-

ever, many challenges and drawbacks of HSC have been observed over the years [39, 47].

Among the top challenges are information overload [48], decision biases [40], and tam-

pering with the role of automation [49]. To address those challenges, numerous studies

have emerged to investigate how humans interact with autonomous systems to improve

human operators’ performance while interacting with such systems [50, 51, 52]. Previous

2



Figure 1.1: Human supervisory control loop.

literature commonly focused on one or a few factors, such as task load [53], autonomy

level [54], and interface design [55], and proceed to investigate how those factors affect

operators’ performance as well as the risk associated with changing those factors.

One weakness we identified in the previous study is that they focused narrowly on

how changes in HSC scenarios influence operators’ performance but overlooked impacts

from such changes on operators’ underlying decision processes and behavior patterns that

result in those performance changes. Thus, other than directly measuring operators’ per-

formance, we argue that it is also important to study how HSC scenario changes impact

their decision processes and behavior patterns.

We considered operators’ decision processes in determining actions and behavior pat-

terns in conducting high-level tasks as operator strategies [56]. Both operator performance

and strategies are important aspects in HSC scenarios [40]. In such scenarios, operators

first make up their strategies by setting goals with different priorities, determining actions

to achieve those goals, and allocating attention to different actions. After that, they perform

various operations based on their strategies to complete tasks and achieve the final goal.
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To effectively incorporate operator strategies into the evaluation of HSC scenarios, op-

erator strategies need to be modeled, and the model should be measurable or quantitatively

comparable. With quantitative measures of changes in operator strategies, researchers can

evaluate the impact of changing factors on operator strategies. For example, if researchers

need to examine whether a new function on a drone supervisory control interface can

reduce inefficient decision making from its operators, researchers can compare operator

strategy models before and after applying such a function, and measure the quantitative

difference between strategies to estimate the impact of the new change.

However, no previous research has focused on quantitatively comparing operator strate-

gies in HSC scenarios. This question, therefore, arises as to how to investigate and com-

pare operator strategies to obtain meaningful strategy difference measures. Such a question

leads to the objectives and research questions in this dissertation.

1.2 Research Questions

The gap in current human-automation interaction and human supervisory control research

topics - comparisons of operator strategies in HSC scenarios with various settings - leads

to the objectives of this research: 1) describe operator strategies by building operator strat-

egy models, 2) develop a strategy comparison metric to quantitatively measure differences

between strategy models, and 3) explain practical meanings of strategy difference mea-

sures by establishing comparison references. Thus, these research objectives lead to the

following two research questions:

• How can operator strategies be quantitatively compared, or how are differences be-

tween operator strategies quantitatively measured, given strategy models?

• What are the practical meanings of the magnitudes of strategy model differences, or

how would changes in HSC scenarios affect operator strategies at different levels?

4



Based on these research questions, the contributions of this research include 1) develop

a systematic operator strategy comparison metric, which can quantitatively and compre-

hensively measure differences between operator strategies modeled from various HSC

scenarios, and 2) establish a continuum of operator strategy comparisons to provide the

references of strategy model difference magnitudes and practical meanings of operator

strategy differences.

1.3 Thesis Organization

In order to address the research questions mentioned above, this thesis has been organized

into the following chapters:

• Chapter 1, Introduction: This chapter first introduces the human-automation inter-

action and human supervisory control scenarios, and then presents the main gap in

current research. Also, Chapter 1 presents the research questions with the contribu-

tions of this dissertation.

• Chapter 2, Background: This chapter provides more background information for the

human supervisory control with related research topics. Also, this chapter presents

existing methods of describing operator strategies in HSC scenarios, and specifically

explains how to utilize hidden Markov models (HMMs) to model operator strategies.

• Chapter 3, Operator Strategy Model Comparison Metric: This chapter describes the

operator strategy model comparison metric. It starts by illustrating the construction

of divergence meshes, then presents two important components of the metric, the

data quantity requirement and the observation alignment approach.

• Chapter 4, Quantitative Operator Strategy Comparison References: By utilizing the

operator strategy model comparison metric, this chapter presents a continuum of
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strategy model comparisons across multiple HSC scenarios with different settings to

provide baselines and references of strategy model comparisons. It also explains the

practical meanings of these references. Thus, researchers can refer to such baselines

and references to evaluate the magnitudes of impacts from specific changes in HSC

scenarios on operator strategies.

• Chapter 5, Conclusion: This chapter summarizes the two main contributions pre-

sented in Chapters 3 and 4. It also discusses the potential applications and the limi-

tations in the comparison metric and comparison references. Finally, future research

directions are also discussed.
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Chapter 2

Background

This chapter surveys previous work on human supervisory control (HSC) and operator

strategy modeling techniques in HSC scenarios. It starts with a review of human super-

visory control theory and presents related studies in describing, modeling, and comparing

operator strategies in HSC scenarios. The chapter later introduces hidden Markov models

(HMM) as a promising model for operator strategies. The HMM strategy model devel-

opment process is discussed in detail, followed by an example of such development for a

simulation-based drone control HSC scenario.

2.1 Human Supervisory Control

With the introduction of an automation system that can perform sensing and computation

automatically, such as a robot, the role of a human in a human-automation interaction sce-

nario changes from that of a direct in-the-loop controller to a position of a supervisory

controller. Human supervisory control (HSC) is a higher-level knowledge-based control

scheme, in which human operators interact with the intermediary of the autonomous sys-

tems through planning, monitoring, and intervening to drive the end effector of the au-

tomation system towards the desired state [57, 39, 43]. An HSC scenario operates in a

closed-loop fashion as illustrated in Figure 1.1. In such a loop, the operator sends con-

trol commands to a computer to remotely control real-world tasks and receive feedback

collected by sensors and displayed on interfaces. Operators in HSC scenarios are mainly

responsible for making higher-level decisions in conjunction with supportive autonomy.

HSC are widely used in transportation, energy, and defense realms [39, 58]. HSC

studies usually target a particular application or a system to improve reliability, efficiency,
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and reduce accidents for operators to control them. For example, Lind et al. proposed a

Multilevel Flow Modeling (MFM) and applied the model for designing displays for su-

pervisory control of industrial plants [59]. Farjadian et al. presented a supervisory control

architecture for pilot-autopilot collaboration to ensure resilient tracking performance in the

presence of anomalies [60], and many others [53, 54, 55]. Among the many HSC appli-

cations, drone or Unmanned Aerial Vehicle (UAV) control is an emerging scenario that

attracts a lot of research attention. With a small footprint and easy deployment, drones

have many potential applications in surveillance, research, and rescue [43, 61, 62, 63].

Many challenges and problems still exist in HSC scenarios [47], and the root causes

trace back to both human operators and autonomous control systems. Some of the major

challenges include decision biases [40], trust and reliability [64], roles of automation and

multi-modal technologies [41]. Also, many factors can influence operator performances,

including individual differences, interface designs, and varying levels of autonomy [40, 47,

65]. Thus, many studies have been conducted for solving such issues by investigating how

various factors in HSC scenarios may affect operator performances [66, 58, 53].

Both operator performance and strategies are important aspects when evaluating an

HSC scenario [40]. During interactions with complex systems, such as drones, human op-

erator forms complex plans regarding work methodologies with the underlying autonomy.

In this process, operators develop strategies in terms of which, when, and how resources

should be utilized, in other words, they assign different priorities and allocate their at-

tention to different tasks, and determine actions to interact with control systems before

executing the task [63, 67, 68]. However, the importance of human strategy modeling

has been largely overlooked in previous studies. Instead, this research focuses on oper-

ator strategies and studies how changes in HSC scenarios will affect operator strategies.

Thus, it is important to understand and describe operator strategies as they illustrate funda-

mental behavior patterns how an operator conducts a certain task [56]. Unlike operators’

performance, which can be directly measured by task success rates and time consumption,
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operator strategies cannot be directly observed, so that modeling techniques are necessary

for studying operators.

2.1.1 Techniques for Modeling Operators

To date, many operator modeling techniques have been proposed at various abstraction

levels for the different subject of study [69, 70, 56, 71, 72, 73]. Summarized in Figure

2.1, operator modeling techniques can be categorized into low, middle, and high levels.

Low-level models focus on estimating operator cognitive processes and describing operator

cognitive structures. By using low-level models such as ACT-R [69] and GOMS [70],

researchers can describe how information is defined and processed by operators and predict

operator actions. However, these models cannot present operator behavior patterns and,

thus, have limited access to operator strategies in conducting tasks.

Figure 2.1: Different levels (architectures) of human operator models.

Middle-level models focus on the relations and cooperation between operators and au-

tonomous systems. Models, such as the hidden Markov model (HMM) [56] and the hid-

den Semi-Markov model (HSMM) [71], can benefit from their structures to reveal both

operator behavior patterns and operations. High-level models, including discrete event

simulation (DES) [72] and agent-based modeling (ABM) [73], focus on assessing effects

from each entity as well as subsystems in the whole system and investigating interactions

between all individuals in large-scale applications. Thus, middle-level operator model-

ing techniques are utilized in this research to model operator strategies because they can
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describe operator control strategies in interacting with autonomous systems.

As shown in Figure 2.1, both HMM and HSMM are middle-level models, which have

been widely used for describing operator strategies and behavior patterns [56, 71, 61, 74,

75]. The HMM is a two-layer stochastic model that describes a Markov process with

a higher layer of hidden system states and a lower layer of observable emissions from

each hidden state [76]. The hidden semi Markov model (HSMM) has a similar structure,

but the HSMM is based on a semi-Markov process instead of a Markov process. While

state transitions in an HMM only depend on the geometric probability values, transitions

in the HSMM depend on both transition probabilities and state durations. An HSMM is

generally more complicated than an HMM developed from the same dataset, because the

model training process for an HSMM requires a time component. Because of the high

complexity and the time component in HSMM models, they can be utilized as predictive

models for time-critical applications [77, 78].

However, because the HSMM has a more complex model structure than the HMM,

even though they share the same number of hidden states, the HSMM requires more data

for model training. More importantly, the time of state transitions is not an important aspect

and is not considered in this research. Thus, the HMM is usually preferred as descriptive

models for operator strategies in HSC scenarios [56, 79, 80, 62, 81]. In this case, the

HMM observations represent the interactions between operators and autonomous systems.

The HMM hidden states, which are weighted combinations of certain observations, and

transition probabilities among these states illustrate operator strategies.

2.1.2 Operator Strategy Models

Operator strategies can be further described as the organization of operators’ tactics used

for performing tasks with different priorities that forms missions and goals [82]. To pre-

cisely and effectively describe operator strategies is the first major step in this research.
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Understanding that this research focuses on quantitatively evaluating impacts from differ-

ent changes in HSC scenarios on operator strategies, a requirement for operator strategy

models is to have a mathematical representation so that differences between models can

be measured quantitatively. Further details of measuring strategy model differences are

illustrated in the next chapter.

The previous subsection introduces two common middle-level models, the HMM and

the HSMM, for describing operator strategies. Other than these two models, researchers

have also proposed other models for describing operator strategies and behavior patterns

[82, 83, 84, 85, 86, 87, 88, 89]. Gindele et al. utilized a partially observable Markov

decision process (POMDP) model to estimate driver strategies, especially the decision

making process, in driving scenarios with advanced assistance systems [83]. Authors con-

sidered traffic environment elements, such as traffic participants and lanes, in their models

to predict drivers’ actions and future poses of traffic participants. However, environmental

elements are not considered in our research, and we focus on diagnostic model structures

instead of model predictive abilities in order to measure model differences. Thus, while the

POMDP is an ideal model for estimating driver actions, it has limited capability to describe

driving strategies.

Pentland et al. proposed to use a set of dynamic models, such as Kalman filters, se-

quenced by a Markov chain to represent human strategies [86, 90]. Authors first separated

human strategies into two levels, small-scale and large-scale structures of human behav-

iors. Then they utilized Kalman filters to represent small-scale behaviors and a Markov

chain to represent large-scale behaviors by connecting these Kalman filters. Similar to the

HMM model structure, this framework also considered human strategies as a two-layer

structure. However, the structure of this framework was predefined by the authors rather

than trained using data-driven methods. Thus, the model framework proposed in this work

can only describe operator strategies in specific scenarios and cannot be generalized to

other HSC scenarios with different settings.
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Another study conducted by Frias-Martinez et al. reviewed various soft computing

techniques, such as fuzzy logic, neural networks, and genetic algorithms, for modeling

human behavior patterns [87]. Soft computing is considered as computational techniques

and models with tolerance of impression, uncertainty, and partial truth in authors’ work.

Authors presented several applications of using typical soft computing models. For ex-

ample, fuzzy logic can be used to mimic the process of human decision-making and infer

goals and plans, neural networks can be used in more complex scenarios with more human

and system inputs. However, the structures of these models are not directly interpretable

and explainable, and these models are usually used for prediction tasks. Thus, among

such quantitative models for modeling human strategies, the HMM is selected as strategy

models in this dissertation because of its high interpretability.

2.1.3 Operator Strategy Comparisons

Given techniques and methods for describing operator strategies, researchers can investi-

gate strategy differences by comparing resulting strategy representations. However, com-

parison methods can be different based on corresponding strategy modeling techniques.

While only limited previous work focused on studying differences in operator strategies

and behavior patterns [91, 92, 93, 94], these efforts inspire us to develop an operator strat-

egy comparison metric for HSC scenarios.

Previous research conducted by Haas et al. analyzed differences in individuals’ strate-

gies by studying external factors such as social, cultural, and institutional factors [91]. This

work considered individuals’ strategies as the combination of their behaviors, recognition

of hazards, and decision-making processes. The authors interviewed participants with two

occupations, including motorcyclists and mineworkers, with detailed questions about their

interactions with risky environments. Then, the authors formalized participants’ strategies

by parsing their answers based on external factors and referring to codebooks. As a result,
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the authors qualitatively described individuals’ strategies in interacting with risky environ-

ments and compared them to infer how external factors affect strategies in different envi-

ronments. While such a qualitative strategy comparison method can provide researchers

preliminary insights about the impacts from various factors, it cannot quantitatively mea-

sure differences between strategies and evaluate such impacts.

Markkula et al. reviewed different drivers’ strategies in on-road collision situations

and qualitatively compared these strategies for validating those strategy models [92]. First,

the authors pre-defined five categories for drivers’ near-collision strategies. Then, they

implemented and tested reviewed models on a driving scenario to investigate the effective-

ness of such models and the similarity between them. The authors concluded that those

models representing the pre-defined strategies were similar because they were capable of

predicting drivers’ actions during collision avoidance with similar success rates. While the

pre-defined strategy categories may shed light on drivers’ behavior states and characteris-

tics in collision situations, these categories were subjectively defined and selective. Thus,

objective strategy description and comparison methods are preferred to reduce subjectivity

in investigating similarities among operator strategies.

Research conducted by Traulsen et al. studied how individuals’ strategies update in

evolutionary games [93] by comparing strategies across different phases of the game. In

this work, the authors considered individuals’ actions as strategies and used individuals’

performance to evaluate strategies during the gaming process directly. Given the player

performance comparison results, which represent player strategy comparisons, the authors

found that the probability of player switching strategies increased as the payoffs from the

game vary in the later phase of the game. This topic is closely related to presenting differ-

ent strategies in evolutionary scenarios or different phases of interacting with autonomous

systems. However, utilizing individuals’ performance to evaluate and compare their strate-

gies is too high-level. Such a method cannot provide researchers insights about why one

strategy is better or more effective than another.
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These previous studies demonstrate different methods of comparing individuals’ strate-

gies and behavior patterns formalized by various models and representations. While qual-

itative strategy description and comparison methods are useful for exploratory purposes

such as examining factors, they cannot provide mathematical representations for operator

strategies and numerically measure strategy differences. So, researchers cannot quanti-

tatively evaluate impacts in HSC scenarios using qualitative methods. Similarly, subjec-

tive methods are not preferred because researchers’ subjectivity can introduce individuals’

biases, which can cause distorted strategy modeling and comparison results. Also, the

strategy model properties should be considered in strategy comparisons since these prop-

erties describe operators’ behavior states and decision processes. Therefore, a quantitative

model comparison method is needed to measure differences among strategy models. Re-

searchers can objectively investigate and evaluate how changes in HSC scenarios impact

operator strategies with such quantitative measures. Further details of the model compari-

son method are illustrated in the next chapter.

2.2 Hidden Markov Model (HMM)

The previous section presents the basic concept of human supervisory control scenarios and

existing techniques for modeling human operators at different levels. Also, the previous

section justifies the use of hidden Markov models for modeling operator strategies in this

research. This section starts with the introduction of the hidden Markov model structure

and how we can use HMMs to model operator strategies. Then this section illustrates the

HMM model development and selection process.
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2.2.1 HMM Structures and Applications

The hidden Markov model is a stochastic model that describes a Markov process with some

states and variables that are not observable [77, 95]. In a Markov model, all system vari-

ables, including system states and state transitions, are observable. However, in a hidden

Markov model, system states are not directly observable, and the only observable variables

are emissions and emission probabilities that are determined by hidden system states. Fig-

ure 2.2 illustrates a hidden Markov model with four observations, including O1, O2, O3

and O4, and three hidden states, S1, S2 and S3. Each hidden state S can be considered as

a weighted cluster of all observations, and all weights should equal 100%. HMM models

are used to represent both higher-level human operator behavior states and lower-level op-

erator interactions with human supervisory control systems in order to visualize the overall

structure of operator strategies.

Figure 2.2: An example of a hidden Markov model structure.
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The HMM structure shown in Figure 2.2 can be formally described as a tuple [77, 96],

λ = {S,O,A,B}, in which, S = {S1,S2, · · · ,SN} represents N different hidden states, and

O = {O1,O2, · · · ,OM} represents M different observation types. A = {ai j} is a N ×N

transition probability matrix, in which ai j =P{St+1
j |St

i}, and B= {bik} is a N×M emission

matrix, in which bik = P{Ok|Si}, i, j ∈ [1,N], k ∈ [1,M]. The transition and emission

matrices connect all hidden states and observations of an HMM. The tuple λ = {S,O,A,B}

can be illustrated as:

S = {s1,s2, · · · ,sN} O = {o1,o2, · · · ,oM}

A =


a1 · · · a1N

· · · · · · · · ·

aN · · · aNN

B =


b11 b12 · · · b1M

b21 b22 · · · b2M

· · · · · · · · · · · ·

bN1 bN2 · · · bNM


The HMM is widely used in the machine learning field, especially in speech recogni-

tion [76], image and video segmentation [97], biomedical image pattern recognition [98],

and development of human operator behavior models [99, 79, 56]. Rabiner published a

milestone study in HMM theory and applications, which illustrated the mathematical de-

tails of HMMs and provided many typical HMM structures [76]. He also investigated

the HMM model developing process, including model training and model selection algo-

rithms. Suzuki et al., developed a human driving behavior model using HMM to study

driver collision avoidance behaviors [99]. In their work, they treated human driving behav-

ior states as multiple simplified linear models, instead of specific cognitive representations,

to collect experiment data more directly and to understand the model better from a math-

ematical perspective. The HMM is an appropriate quantitative model for this research

because the HMM can efficiently capture information about higher-level human operator

behavior states and transition probabilities among such states from lower-level observa-

tions to represent operator strategies in HSC scenarios.
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2.2.2 HMM Model Training Process

As described in the previous subsection, researchers can utilize hidden Markov models to

model operator strategies. As shown in Figure 2.3, the observable actions from operators

can be represented by the observation layer in an HMM, and operator control strategies

can be represented by the hidden states and transitions among them.

The first important factor that impacts HMM structure is the model training method.

An HMM model can be trained via different methods, including supervised, smooth su-

pervised, and unsupervised learning [79]. Comparing these training methods, the results

showed that the unsupervised HMM model training provided the model with the highest

model likelihood [56]. Understanding that a higher model likelihood value represents a

model that is more likely to fit the data points, the unsupervised HMM model training is

preferred in this research. The unsupervised model training is a data-driven method, which

is also an expectation maximization (EM) algorithm, so that it can provide subjective strat-

egy modeling results.

Given that the unsupervised learning approach is preferred, the multi-sequence Baum-

Welch algorithm is utilized for training hidden Markov models [56]. Considering that

such an HMM training process requires various hidden state numbers as initialization, the

Bayesian information criterion (BIC), which is a widely-used model selection criterion, is

utilized as the model selection for determining the number of hidden states for an HMM

[100]. To avoid overfitting caused by adding parameters, the BIC penalizes the number of

free parameters based on the model likelihood value. The calculation of BIC values can be

represented as:

BIC =−2(logL)+numParam× log(numObs) (2.1)

Here logL represents the log-likelihood value of models, numParam represents the num-

ber of free parameters, and numObs represents the number of observations in the training

process. In model selection, HMM models with lower BIC values are generally preferred.
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Figure 2.3: The connection between hidden Markov models and human supervisory con-

trol scenarios.

Another important factor in the model development process is the first order Markov

assumption. Evaluating the first order Markov assumption of the memorylessness property

is critical for applying HMM to develop operator strategy models. In human supervisory

control scenarios, the first order Markov assumption may not hold that the current higher-

level behavior state in operator strategy processes may only depend on the previous state,

or depend on several previous states [101]. The Bayesian information criterion (BIC) can

also be used for evaluating different Markov independent orders.

The difference in applying the first-order or higher-order Markov assumption in the

development of HMMs for operator strategy models was studied in Boussemart’s work by

comparing different models with different Markov independent orders [102]. In this study,

HMM models were developed based on certain human supervisory UAV control scenarios,

and BIC values of HMM models were compared to select a preferred Markov order. As a
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result, the HMM models with a second or third Markov independent order had significantly

higher BIC values than HMM models with the first-order Markov property. This finding

indicates that additional information captured in higher-order HMM models cannot balance

out the significant increase in the model complexity. Thus, the first-order HMM models

are preferred in the development of operator strategy models in human supervisory control

scenarios.

Specifically focusing on the BIC method, BIC curves generated from HMM training

processes may monotonically decrease or converge to certain values with the increase of

the hidden state number. The model with the most states, which may have the lowest BIC

value, may not be the most appropriate model since it cannot provide valuable implica-

tions about the clustered behavior states. To maintain the simplicity and interpretability

of descriptive models, the number of rate states (NRS) was applied to assist the BIC with

model selection by monitoring all rare states whose occurrence frequency was lower than

a threshold, which is usually 5% [74].

2.3 An Example of Strategy Model Development

Given the introduction of human supervisory control in the first section and the utilization

of hidden Markov models as operator strategy models in the second section, this section

presents an example of the strategy model development process in an HSC scenario, which

is a simulation-based human-subject experiment. Further details of this experiment are in

Appendices A and B.

2.3.1 The HSC Scenario for Data Collection

The data used for developing strategy models was collected from a human-subject experi-

ment conducted on the Security-Aware Research Environment for Supervisory Control of
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Heterogeneous Unmanned Vehicles (RESCHU-SA) platform [103], which is an extension

of the original RESCHU platform [104]. RESCHU-SA is a Java-based simulation plat-

form for a single-operator with multi-UAV supervisory control scenarios. It provides the

flexibility to design multi-tasking scenarios including both navigational and imagery anal-

ysis tasks. Moreover, this platform provides capability for simulating UAV GPS spoofing

attacks, in which hacked UAVs deviate from the originally assigned paths and destinations,

along with pop-up notifications that simulate autonomous GPS spoofing detection systems.

The primary objectives of operators using RESCHU-SA were to control multiple UAVs

to 1) determine whether UAVs were under GPS spoofing attacks, 2) perform imagery anal-

ysis tasks of counting road intersections when UAVs reached targets, and 3) ensure that

UAVs did not encounter hazard areas. While statistical analysis results of this experiment

provide high-level understanding of the factors that impacted operator performance, we

still need to further investigate the underlying nature of why such factors had certain ef-

fects on performance. Also, operator hacking detection strategies could not be inferred via

statistical results. Thus, operator strategy models are needed for further describing operator

behavior patterns and detection strategies in such UAV supervisory control scenarios.

2.3.2 General Strategy Model

The first step of the HMM training process for the general strategy model, which de-

scribes operator general strategies across experimental sessions, is observation selection.

In RESCHU-SA, every key stroke and mouse action was recorded, along with the system

status. In an HMM, the hidden higher-level behavior states are clusters of operator actions,

so the interaction data should be aggregations of observations based on a pre-defined gram-

mar. In this manner, there were 12 possible places for operators to click in RESCHU-SA,

which yielded 12 observations, as presented in Table 2.1.

The multi-sequence Baum-Welch algorithm, an unsupervised model training method
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was used in model training [77]. HMM model training results were then selected using the

Bayesian information criterion (BIC) [76, 100] and the number of rare states (NRS) method

[74] to achieve both high model likelihood values and reasonable model structures.

Table 2.1: Observations of HMM models from RESCHU-SA experiment interface

1 Add waypoint 2 Move waypoint 3 Delete waypoint 4 Move endpoint

5 Switch target 6 Engage task 7 Select UAV 8 Confirm info

9 Ignore info 10 UAV hacked 11 UAV not hacked 12 Adjust zoom

The general operator strategy HMM model was trained using observation sequences

with 12 different observations as shown in Table 2.1. Based on the model selection process

described in the previous section, the HMM model with 7 states had the lowest BIC value.

Also considering that the 7-state model did not have any rare states and the HMM models

with 8 or more states had at least one rare state, the general operator strategy model was

determined to be a 7-state HMM model, as shown in Figure 2.4a. The interpretation for

each hidden state was determined by the emission probabilities, shown as the histograms

in Figure 2.4b.

The first state was interpreted as “Manipulate Target” because it was mainly a cluster

of observations 4 (Move endpoint), 5 (Switch target), and 7 (Select UAV), which were

directly related to UAV target manipulations. The second state was interpreted as “Hack-

ing Detection” because this was the only state that had significant emission to observation

12 (Adjust zoom level), which indicated a typical operation of using cameras to compare

against the map. The third state was interpreted as “Select UAV” because its only major

emission was observation 7 (Select UAV). The fourth state was interpreted as “Manipulate

Waypoint” because it was a cluster of observations 1 (Add waypoint), 2 (Move waypoint),

3 (Delete waypoint) and 7 (Select UAV), which were directly related to waypoint manage-

ment. The fifth state was interpreted as “Engage Imagery Task” because its only major
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(a)

(b)

Figure 2.4: The general operator strategy HMM model with emission histograms. (a) The

7-state hidden state layer. (b) Emission histograms for each hidden state.
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emission was observation 6 (Engage task), indicating people were executing the intersec-

tion counting task. The sixth state was interpreted as “Hacking Decision” because it was

the only state that had major emissions to observations 10 (Consider UAV hacked) and 11

(Consider UAV not hacked) which were decisions for hacking events. The seventh state

was interpreted as “Initiate Hacking Detection” because it was the only state that had emis-

sions to observations 8 (Confirm Notification) and 9 (Ignore Notification) which indicated

the initiation of hacking detections.

The general operator strategy model represents the operator behavior states in nav-

igating UAVs, conducting imagery searches, and dealing with potential hacking events.

The first interesting fact shown in the model is that the UAV navigation (highlighted in

blue) and hacking detection (highlighted in yellow) functional groups can be distinguished

clearly based on the hidden state interpretations. The transitions between these two groups

represent the probabilities of switching functional groups in operator behavior states.

Two major state transitions, which start from the “Initiate hacking detection” state and

end at the “Hacking decision” state, in the general strategy model were highlighted and

shown in Figure 2.5. These two transitions represent major behavior state flows in partic-

ipant hacking detection strategies. The transition highlighted in yellow shows that some

participants focused on detecting hacking events that they did not transit to other states

in the navigation functional group. On the other side, participants who followed the pur-

ple transition switched between the two main functional groups during hacking detection

tasks. These major transitions illustrate potentially different ways that participants de-

tected hackings. In order to further investigate participants’ strategies in hacking detection

tasks, a hacking detection strategy model was developed on detection-related observation

sequences and discussed in the next section.

A previous study on the original RESCHU platform, which only dealt with the navi-

gation of the UAVs and did not have any hacking considerations [56], exhibited just four

similar states to those blue states in the navigation functional group in Figure 2.4. This
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Figure 2.5: Major behavior state transitions in the general strategy model.

is an important finding since it means that the addition of a new set of tasks did not dra-

matically change the underlying states, rather the added functionality of hacking detection

simply added more states. This suggests that at least in some supervisory control environ-

ments, functions may be modeled in a modular fashion, which would reduce the workload

in adapting older models as new functions are added.

Also, the general RESCHU-SA model in Figure 2.4 shows some potential inefficien-

cies in operator strategies. In the navigation functional set of states, the first state of “Ma-

24



nipulate Target” and the fourth state of “Manipulate Waypoint” have high self-transition

probabilities. These probabilities indicate that once operators entered these two behavior

states, they tended to conduct repeated operations. Such repeated operations indicate po-

tential inefficiencies that could be improved with future designs, such as assistant systems,

for the UAV supervisory control interface.

Two hidden states, “Hacking Detection” and “Initiate Hacking Detection”, in the hack-

ing detection functional group also revealed potential problems with self-transitions. The

time consumption in hacking detection was negatively correlated with the hacking detec-

tion success rate (Pearson=-0.375, p=0.001). Thus, the longer the person spent investi-

gating a potential hacking event, the less likely a successful detection would occur. This

result was surprising because as people gather more information, they should be able to

increase their probability of successful detection. This result then led us to develop more

detailed HMMs about operator hacking detection strategies in order to shed more light on

this unexpected result. These more specific HMMs are detailed in the following section.

2.3.3 Hacking Detection Model

The HMM in Figure 2.4 provides an overall view into how operators approached the nav-

igation and imagery tasks, while also dealing with hacking events. However, since this

model does not provide enough details about how operator formed strategies for dealing

with the hacking events, we elected to focus on those operator interactions from the begin-

ning to the end of each hacking event. The resulting hacking detection model was trained

based on 10 observations instead of the original 12 observations, as shown in Table 2.2.

In the revised training dataset, original observations of “Confirm notification” and “Ignore

notification” were combined into “Perceive hacking”, and “Consider UAV hacked” and

“Consider UAV not hacked” were combined into “Detection decision”.

As shown in Figure 2.6a, the resulting hacking detection strategy model is a 6-state
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Table 2.2: Observations of the hacking detection strategy model

1 Add waypoint 2 Move waypoint 3 Delete waypoint 4 Move endpoint

5 Switch target 6 Engage task 7 Select UAV 8 Perceive hacking

9 Detect decision 10 Adjust zoom

HMM based on a model selection process similar to the one used for the general operator

behavior model. The interpretation for each hidden state was determined by the emission

probabilities shown in Figure 2.6b. Although the observations were slightly different, the

interpretation criteria were similar to the general behavior model. The six hidden states

were interpreted as 1) the start state of Perceive Hacking; 2) Select UAV; 3) Adjust Target;

4) Engage Imagery Task; 5) Adjust Waypoint; and 6) the end state of Hacking Decision.

The 56.8% transition from the END state to the START state represents overlapping hack-

ing detections where operators finished a hacking detection and then on to immediately

start another hacking event.

Two major behavior state transitions in the hacking detection HMM model are pre-

sented based on transition probabilities, as shown in Figure 2.7. Such transitions are con-

sidered as hacking detection operation flows because they began with the START state, in

which operators perceived hacking events, to the END state, in which operators made de-

tection decisions. The first major flow, indicated by blue arrows, has an intermediate state

of “Adjust waypoint” between the start and the end state. The second major flow, shown

by red arrows, has two intermediate states of “Adjust target” and “Select UAV”. These

two major operation flows suggest two dominant hacking detection strategies, termed

“waypoint-oriented strategy” and “target-oriented strategy”.

In the waypoint-oriented strategy, operators tended to manipulate UAV waypoints, in-

cluding adding and moving waypoints, to detect hacking events. In this hacking detection

strategy, operators typically either manipulated or introduced waypoints to investigate the
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(a)

(b)

Figure 2.6: The hacking detection strategy HMM model with emission histograms. (a)

The 6-state hidden state layer. (b) Emission histograms for each hidden state.
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Figure 2.7: Major behavior state transitions in operator hacking detection strategies.

potential differences in the scene between the camera view and the surrounding map area.

Operators who used this strategy usually fixated on comparing the effects of turning the

UAV and the appearance of the ground in the camera feed to that expected while turning

based on the map. This is considered as a dynamic strategy because motion was a key

element in the determination of location.

In the target-oriented strategy, operators tended to directly switch UAV targets to detect

hacking events. In this strategy, operators typically focused on the specific landmarks that

the UAVs would fly over, such as unusual intersections or buildings. This is considered as

a static strategy because operators would wait until the UAV reached a place of interest to
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make a hacked or not hacked decision. Both strategies revealed inefficiencies, primarily

through the self-transition probabilities. For example, in the waypoint-oriented strategy,

62% of people stayed in this state, repeatedly adding, moving, and deleting waypoints.

Similarly, 37% of people repeatedly redirected vehicles to other targets, suggesting an

inefficient target selection process. These inefficiencies could potentially be made better

with advanced decision support.

The occurrence frequency and percentages of the waypoint- and target-oriented strate-

gies for each participant was obtained by applying the hacking detection HMM model to

each participant’s data using the Viterbi algorithm [76]. Based on the occurrence percent-

age of the adjust waypoint and adjust target states, participants were classified into different

hacking detection categories. As shown in the Table 2.3, participants were classified into

four categories, including 1) waypoint strong dominant strategy; 2) waypoint weak domi-

nant strategy; 3) target weak dominant strategy; and 4) target strong dominant strategy. The

population of each strategy category was approximately one fourth of the total participant

population. However, no strategy dominated in terms of performance.

Table 2.3: Participant classification based on different hacking detection strategies

Index Strategy Number Percentage

1 Waypoint strong dominant 10 27.8%

2 Waypoint weak dominant 7 19.4%

3 Target weak dominant 11 30.6%

4 Target strong dominant 8 22.2%

Overall, the scenario strategy model, derived using RESCHU-SA-based experiments,

shows 7 major human operator behavior states for supervision of UAVs that could be sub-

ject to hacking events. In this model, two functional groups emerged, including a hacking
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detection group with three states and a UAV navigation group with four states. Also, the

6-state hacking detection strategy model allowed us to investigate operator hacking detec-

tion strategies in detail. Two major strategies can be observed from the model, including

waypoint-oriented and target-oriented strategies. These diagnostic operator strategy mod-

els highlight that effective strategies can be inefficient. Further work can determine why

people adopt different strategies and whether additional technology-based assistance can

be used to improve operator strategies.

In summary, the operator strategy models in this section illustrate how operator strate-

gies in conducting supervisory control tasks can be modeled through the use of HMMs.

By utilizing HMM models, researchers can describe operator strategies in various HSC

scenarios with different settings. In this case, researchers can evaluate if applying certain

changes, such as adding a support system or modifying a control interface, will affect oper-

ator strategies by comparing resulting strategy models. Thus, the following chapters focus

on the model comparison process and the practical meaning of model difference measures.

2.4 Chapter Summary

This chapter presents the background of this dissertation. This chapter starts with a sec-

tion that introduces human supervisory control, which is a typical control scheme in the

human-automation interaction. This section also reviews common techniques for modeling

human operators. Specifically, hidden Markov models have been utilized in this research

as operator strategy models. The second section of this chapter illustrates the structure of

hidden Markov models and the model training and selection process. The last section in

this chapter demonstrates an example of strategy model development from an HSC sce-

nario of multiple drone control. In this example, a general strategy model and a hacking

detection model are presented.
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Chapter 3

Operator Strategy Model Comparison Metric

This chapter describes the details of the operator strategy model comparison metric, which

is the first main contribution of this dissertation. The first section starts with a review

of common methods of comparing HMM models and explains the divergence distance

measure utilized in this dissertation in detail. Then, this section introduces the construction

of a divergence mesh, which is an extension of the divergence distance measure and can

provide more comprehensive model difference measures.

The subsequent sections in this chapter present two important parts of the model com-

parison metric. The first part describes the data quantity prerequisite for effectively mod-

eling operator strategies and conducting strategy model comparisons. The second part

details the observation alignment approach, which requires modification of data elements

to compare strategy models with non-equivalent model observations.

3.1 Development of Divergence Meshes

This section presents the principle and calculation of the divergence distance measure,

which is a commonly used HMM difference measurement method. This section also

presents the development process of divergence meshes, which can provide more com-

prehensive comparison results for HMM models. Lastly, this section provides an example

of the interpretation of comparison results using a divergence mesh.
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3.1.1 HMM Model Difference Measures

Researchers compare HMM models to evaluate the underlying differences between the

datasets that lead to such models. Other than qualitative model comparisons of state in-

terpretations and model structures between HMM models, many quantitative HMM model

difference measurement methods have been proposed for various applications, including

the investigation of HMM development, HMM classification, and sensitivity tests on HMM

model parameters [105, 106, 107].

Among these model comparison methods, two model difference measurement methods

widely utilized to quantitatively investigate the similarities between HMM models include

the divergence distance measure [108] and the co-emission probability distance measure

[107]. Specifically, the divergence measure focuses more on the model fitting probability

aspect of different HMM models applied to the same given data sequences, while the co-

emission measure emphasizes the quantitative distance between HMM model data vectors

in a high dimensional space.

The divergence distance method measures the difference between the model fitting

probability of a pair of HMMs [108]. The representation of the divergence measure can be

defined as:

D(λ1‖λ2) =
1

num
| log(P(Oall|λ1))− log(P(Oall|λ2))| (3.1)

In the equation above, D(λ1‖λ2) is the divergence value calculated from the difference

of model fitting likelihood on the dataset Oall between λ1 and λ2, which represent the first

and second HMM model respectively. Specifically, Oall is the combination of both models’

training datasets, and num is the total number of data points, or observations, in Oall .

Figure 3.1 presents the calculation process of a divergence value between two models

developed from two different scenarios. Starting with data collection from HSC scenarios,

HMM strategy models are trained based on collected data batches. Then an evaluation

dataset is combined from training data batches of both models. The HMM models are
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Figure 3.1: The divergence distance measure calculation process.

applied to the evaluation dataset to obtain model fitting probability values. Based on such

model fitting probabilities, the divergence value can be calculated to quantitatively present

the difference between these two models. The theoretical minimal divergence value is 0

based on the calculation shown in Equation (3.1). In this case, two HMM models share the

same model fitting probability on a certain evaluation dataset, which means that the two

models present the information of the underlying data patterns of the evaluation dataset at

the same abstract level. Also, the upper bound of the divergence measure is unlimited so it

can present model differences across a large value range.

The divergence measure has been utilized in many HMM-based applications to quanti-

tatively measure differences between HMM models [109, 110, 111, 112, 113, 114]. HMM

models have been widely used from the early stage of the speech recognition field [76], and

Rabiner et al. used divergence measure to compare HMM recognition models to isolate

digits and words in speech signals [109]. Yu et al. also used this method to distinguish data

pattern models of HMMs [113]. The divergence measure can provide HMM model differ-

ence measures in a large scope, which starts from zero. Thus, researchers can evaluate the

magnitude of HMM model differences in a wide range.
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The second model difference measurement method is the co-emission probability dis-

tance measure, which focuses on the geometric distance between two HMM models. The

geometric distance is considered as the angle of data vectors between two model data

batches in a high dimensional space. The co-emission probability of two models also

presents the generalizability of the models across given datasets [107]. The co-emission

probability of two HMM models is defined as:

A(λ1,λ2) = ∑
OM∈O

Pλ1(OM)Pλ2(OM) (3.2)

Similar to the divergence distance method, λ1 represents the first HMM model and λ2

represents the second HMM model. OM is a sub-sequence of all observation sequences O,

which is also a combined evaluation dataset. Thus, Pλ (OM) represents the probability of

an HMM model fitting a given data sequence OM. Then, the summation of the product of

such model fitting probability values of sub-sequences from both models is considered as

the co-emission probability of such two specific HMM strategy models on an evaluation

dataset. The calculation process is illustrated in Figure 3.2.

Using the co-emission probability, the similarity between two HMM models, λ1 and

λ2, is defined as:

S(λ1,λ2) = A(λ1,λ2)/
√

A(λ1,λ1)A(λ2,λ2) (3.3)

Here, A(λ1,λ2) is the co-emission value between models λ1 and λ2. And A(λ1,λ1),

A(λ2,λ2) are co-emission values within either model λ1 or λ2. Such a similarity measure-

ment follows the calculation of cosine similarity, which is represented using a dot product

and magnitudes of two vectors:

similarity = cosθ =
A ·B
‖A‖‖B‖

=
∑

n
i=1 AiBi√

∑
n
i=1 A2

i ∑
n
i=1 B2

i

(3.4)

Based on the definition of the cosine similarity, a similarity value of 1 means two tested

models share the exact same structure, and a similarity value of 0 indicates orthogonality

or decorrelation between two models. Thus, the co-emission similarity measure, which
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Figure 3.2: The co-emission probability measure calculation process.

presents the magnitude of how models are similar or different, generates a quantitative

outcome range of 0 to 1.

The co-emission measure has also been used in some HMM model comparisons [115,

116, 117, 118]. Jagota et al. used HMMs to model bioinformatic data sequences and com-

pare resulting HMM models with the co-emission measure to determine the differences

between data sequences [115]. Another similar work conducted by Soding et al. also used

the co-emission measure to compare HMM protein models to investigate the similarity be-

tween models and the homology of models [118]. Since the value range of co-emission

measures is from 0 to 1, if the difference between models is not large, the co-emission mea-

sures will be squeezed into a small value range close to 1 according to the cosine property.

In this case, it would be hard for researchers to evaluate the magnitude of model difference

measures.
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3.1.2 Development of Divergence Meshes

Given that the divergence distance measure provides a quantitative outcome value range

that is larger than the co-emission probability measure, the divergence measure is used

as the main HMM model comparison calculation method in this research. Further, this

outcome range allow us to evaluate the magnitude of model differences in a wider range.

As mentioned in the previous chapter, a model selection process is required in the model

development to determine the optimal model structure to present operator behavior states

and control strategies. The model selection result can be selective, and other model struc-

tures trained from the same data batch also contain information at different abstract levels.

Thus, the approach of developing divergence meshes is proposed in this research to obtain

comprehensive model comparison measures.

The main idea of the divergence mesh approach is to consider all possible model struc-

tures developed from data batches in model comparisons. For instance, model comparisons

are conducted between datasets O1 and O2, which both contain M different observations.

If two datasets have different numbers of observations, an observation alignment process,

which is discussed in the following section, is required before developing HMM models.

Based on the HMM model development process described in the previous chapter, M−1

models will be trained with 2 to M hidden states respectively on both datasets. If only

the optimal model structure is considered in model comparison, then we will only have

one divergence value representing the difference between these two models. If all model

structures are considered, then we can have (M−1)×(M−1) comparisons and divergence

values for plotting a divergence mesh.

A typical divergence mesh is shown in Figure 3.3. This divergence mesh is plotted

based on model comparisons between two data batches, each of which contains 15 types of

observations. Thus, the two horizontal axes, which are based on both data batches respec-

tively, represent a different number of hidden states of resulting HMM models. Such mod-
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Figure 3.3: An example of a divergence mesh.

els contain operator strategy information at different abstract levels with different model

structures. The vertical axis represents the magnitude of divergence values. In this case, a

3D divergence mesh can be plotted with (15−1)× (15−1) = 196 divergence values.

A divergence mesh can provide a comprehensive comparison of the underlying data

patterns between two data batches by considering all possible resulting model structures

rather than a single divergence value calculated from two optimal models. The average

divergence value of a divergence mesh illustrates the general difference between two sets

of models. The 3D shape of the mesh, including the changing trend of divergence values,

shows how different model structures affect the divergence measure.

For the divergence mesh example shown in Figure 3.3, the average of all 196 diver-

gence values is 0.0568, which can generally be considered as a low divergence value (the

detailed quantitative model comparison baselines will be introduced in the next chapter).
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An interesting fact about this mesh is that the comparisons on the diagonal show much

lower divergence values than the comparisons on the side. This fact indicates that models

from these two data batches with the same or similar number of hidden states would be

quantitatively more similar than models with much different model structures. This result

is expected because models with the same or similar model structure contain operator strat-

egy information at a similar abstract level. In general, all divergence values on this mesh

are lower than 0.2, which can be considered as low divergence values.

3.2 Data Quantity Requirement

This section describes the process of determining the minimal data quantity required by

HMM operator strategy model development by utilizing the model comparison concept

and generating divergence meshes. Strategy models developed from datasets with suffi-

cient data quantities can avoid influences from individual variances and present the general

operator strategies in HSC scenarios.

3.2.1 Analysis Approaches

Researchers and practitioners who design systems where humans team with autonomous

systems often need to know the strategies that users of such systems develop. For safety-

critical systems, designers need to know whether such strategies align with the system

designer’s intent and if resulting interaction strategies are safe and effective. While hidden

Markov models (HMMs) have commonly been used to represent such strategy models,

this modeling process can be affected by many factors including the size and number of

individual datasets. For example, human-in-the-loop experimental data is notoriously hard

to collect, so understanding the minimal information set that is needed for such models

would guide such data collection efforts.
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In this section, the impact of data quantity on modeling operator strategies in a human-

autonomy teaming supervisory control scenario is investigated using HMM models. We

focus on the divergence measure [108] and the divergence mesh approach mentioned in the

previous section for model comparisons to determine the minimum number of observation

sets needed. HMM models are used as strategy models in this section [77]. Recall from the

previous chapter that the HMM structure can be represented as a tuple, λ = {S,O,A,B},

in which S represents hidden states, O represents observations, and A and B represent tran-

sition and emission probability matrices, respectively [96]. As mentioned in the previous

chapter, HMM models are trained using the unsupervised multi-sequence Baum-Welch

algorithm [77, 96].

For HMM-based applications in HSC scenarios, it is unclear how model quality is

affected by data quantity. By data quantity, we mean the number of sets of observations,

equivalent to the number of subjects needed for an HMM analysis. While more data is

generally better in modeling, there is a cost-benefit tradeoff between obtaining enough

data in HSC applications. It may be, for example, cost-prohibitive to obtain large datasets

on air traffic controllers under controlled conditions to investigate a new air traffic control

display. However, when using unsupervised learning models, insufficient data could lead

to underfitting [119, 120]. This section attempts to quantify the minimum data quantity for

HMMs to model operator strategies in HSC applications.

In order to determine a minimum sufficient data quantity for approximating the strate-

gies of a population, some previous work has suggested the sample data size should be a

certain proportion of the whole data quantity [121, 122]. Such sampling criteria require

and depend on prior knowledge of the population, which is not typically available in HSC

settings. Similarly, other work has also proposed criteria for determining the minimal data

quantity based on statistical analysis [123, 124]. However, these methods focus on data

size for qualitative approaches such as interviews and surveys, but not for unsupervised

learning models like HMMs. Thus, the primary focus of this section is to determine the
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minimum data quantity for effectively and precisely developing diagnostic models in a

representative HSC scenario.

Many HMM model comparison metrics have been applied to HMM-based modeling

scenarios to quantitatively measure the difference between HMM models [105, 125, 106].

In this section, we utilize the divergence measure metric to compare HMM strategy models,

which measures the difference between the model fitting probability of a pair of HMMs

[108]. The representation of the divergence measure can be found in Equation (3.1). Based

on the divergence values of the comparisons between HMM strategy models developed

from different training data quantities, we can infer the approximate minimum sets of data

needed for modeling general operator strategies.

3.2.2 Data Generation

To develop strategy models, a large dataset of action sequences in an HSC application is

needed. Given that databases of large HSC experiments are not publicly available like that

of air traffic controllers, we utilized a public large dataset of StarCraft II gaming sessions

in this research [126]. StarCraft II is a real-time strategy (RTS) game, which is similar to

many real-world applications of supervisory control such as air traffic control and military

planning scenarios. In this game, the player’s goal is to defeat other players by conducting

several high-level tasks, including gathering resources, developing buildings and technolo-

gies, and navigating units to battle. The StarCraft II game is an effective HSC proxy since

players indirectly control all units via a keyboard and a mouse (a control interface) to con-

duct high-level tasks under time pressure. The order and transition of player commands,

which constitute observable states, can illustrate players’ in-game strategies.

StarCraft II replay files were accessed from Blizzard Entertainment’s official website

(https://starcraft2.com/en-us/). Replay files contain compressed information of games, in-

cluding 1) game duration in seconds, 2) the name of the game map, 3) the role players
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selected, 4) players’ number of actions per minute (APM), 5) players’ matchmaking rating

(MMR), which is an official measure of players’ skill-levels, and 6) players’ game results

in terms of wins or losses [126]. We leveraged the application programming interface

(API) provided by Blizzard Entertainment (https://github.com/Blizzard/s2client-proto) to

import replay files to the StarCraft II game and parse players’ action sequences.

Because the entire database consists of over 500,000 replays with over 100 million data

points, we filtered the replays to obtain a dataset that was similar in length and complexity

(i.e., number of observations) to that generated by the widely used HSC research experi-

mental platform of RESCHU-SA [127, 128, 62]. The collected StarCraft action sequences

were based on specific criteria, including: 1) a single map (out of over 20 maps), called

Triton LE, 2) a single role (out of three roles), called Terran, and 3) replays that lasted more

than 300 seconds with more than 100 actions. In total, we parsed 2000 replays as the final

dataset, in which each replay contains about 380 actions, on average.

Based on the action list embedded in the API, we converted raw actions into 15 primary

observations, as shown in Table 3.1. We clustered raw actions with the same group name

but different targets or objects into a single observation to reduce unnecessary model train-

ing complexity. For example, “Build Armory”, “Build Assimilator”, and “Build Bunker”

are all raw actions that represent building in-game constructions or units, so these were

termed “Build”. Also, “Train Carrier”, “Train Drone”, and “Train Mothership” are raw

actions that represent producing and generating in-game battle units, so these actions were

termed “Train”. Given these conversions, the final dataset contained 2000 parsed data

sequences with the 15 observations shown in Table 3.1.

3.2.3 Model Development and Comparison Process

Once the 2000 StarCraft II game replays were selected, we then developed a series of

models with differing numbers of sets of observations and compared them quantitatively to
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Table 3.1: Observations in the StarCraft II game

Index Observation Description

1 Train Generate or build units

2 Attack Send units to attack enemies

3 Build Make or build constructions

4 Effect Maintain units, including repair and charge

5 Morph The transformation of units

6 Cancel Cancel current action

7 Unload Unload from certain units or constructions

8 Lift Select certain constructions and transport

9 Land Settle certain constructions

10 Stop Terminate auto progress

11 Burrow Hide units underneath the surface

12 Harvest Gather resources

13 Rally Predefine destinations after generating units

14 Trainwarp Generate special units

15 Hallucinate Set hallucination effects on units

discover the stability and reliability of the HMM modeling technique for representing HSC

strategies. As shown in Table 3.1, models will not have more than 15 hidden states because

states represent weighted clusters of observations. The minimum number of hidden states

for any model is two because transitions between at least two states are necessary to present

transitions among players’ behavioral states as a part of players’ strategies.

In order to compare models built from different quantities of data, we parsed 2000 game

replay data sequences into 9 different groups with different data quantities (5, 10, 20, 30,
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50, 100, 200, 500, 1000 replays). Then for each data quantity, we randomly selected 30

batches of sequences for model development in order to capture variance in individual

player strategies. Thus, for each 30-sequence data batch, we developed HMM models with

all possible numbers of hidden states, from 2 to 15 states, utilizing the multi-sequence

Baum-Welch algorithm [77]. For example, randomly selecting 30 batches of 100 replay

sequences from the original 2000 sets of observations forms 14 clusters of HMMs (from

2 to 15 hidden states), each with 30 models. This overall model training procedure can

be referred to as Algorithm 1. The dataset of 2000 replays is treated as a special data

group. A set of HMM models with 2 to 15 hidden states was developed for these 2000 data

sequences to represent the ground truth of HMM strategy models across all players.

Algorithm 1 Model Training among Data Groups with Different Data Quantities
1: procedure MODEL TRAINING PROCESS

2: Q = {5,10,20,30,50,100,200,500,1000}

3: for each p ∈ Q do

4: for i← 1 to 30 do

5: Randomly select the ith data batch of p replays

6: for n← 2 to 15 do

7: Train an HMM λpin with n states on the ith data batch of p replays

8: Record the model λpin

9: return . Finish model training

In order to compare the fidelity of each set of models for the different data quantities,

we focus on model comparisons across 9 data groups (from 5 to 1000 replays). The overall

comparison process is illustrated as Algorithm 2. Specifically, for each pair of resulting

HMM models, we utilized their training data batches described in the previous subsec-

tion as an evaluation dataset to calculate divergence values to quantitatively present the

difference between them [108].
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Algorithm 2 Model Comparison among Data Groups with Different Data Quantities
1: procedure MODEL COMPARISON PROCESS

2: Q = {5,10,20,30,50,100,200,500,1000}

3: for each p,q ∈ Q do

4: for each i, j ∈ [1,30] do

5: Combine datasets Opi and Oq j to Opi+q j

6: for each n,m ∈ [2,15] do

7: Calculate D(λpin‖λq jm) on Opi+q j

8: Obtain an average divergence mesh of D(λp‖λq)

9: based on D(λpn‖λqm) by averaging over i, j

10: Record the mesh D(λpn‖λqm)

11: return . Finish model comparison

For divergence comparison between two HMM models, the minimum possible value

is zero based on the divergence calculation shown in Equation (3.1). In this case, two

models share the same model structure and produce the same fitting probability from the

evaluation dataset. Although there is no upper limit of a divergence value, divergence

values less than 0.1 are usually considered small and divergence values larger than 0.3

are usually considered large [81]. In this effort, small divergence values indicate a high

similarity level between the model structures of two sets of HMM models and illustrates

that operators’ behavior patterns and strategies between two datasets are similar.

The data quantity level comparison is presented as the first “ f or” loop (line 3) in Al-

gorithm 2 for every combination of two data groups with data quantities of p and q. When

p 6= q, the comparison focuses on how different data quantities affect the difference of

players’ general strategies extracted respectively from two data groups. When p = q, the

comparison focuses more on how model complexity affects the similarity between models

developed from the same quantity of data.
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The model structure level comparison is illustrated as the second and third “ f or” loop

(lines 4 and 6) in Algorithm 2. As mentioned in the description of Algorithm 1, a set of 14

HMM models with hidden state numbers from 2 to 15 are trained respectively on each data

batch. Thus, at this comparison level, 14×14 = 196 comparisons are conducted for a pair

of data batches. For comparing two HMM models, we first combine their model training

datasets into an evaluation dataset, which is the Oall in Equation (3.1) or the Opi+q j in

Algorithm 2. Then we obtain the number of data points, which is num in Equation (3.1), in

the combined dataset and compute the model fitting probability, P(Oall|λ1) and P(Oall|λ2),

for calculating the divergence value, D(λ1‖λ2).

Given that we have 30 data batches in each data quantity, divergence values between

two specific model structures are averaged to represent the difference measure. While

comparing data quantities of p and q (when p 6= q) with 30 batches respectively, we have

30×30 = 900 batch combinations in total, and for each combination, we have 196 diver-

gence values, D(λpin‖λq jm),n,m∈ [2,15]. Thus, for a specific model structure combination

n and m, the average, D(λpn‖λqm), of 465 divergence values D(λpin‖λq jm), i, j ∈ [1,30] is

used for such a specific setting with variable of p,q,n,m. For a special case of p = q, the

total number of batch combinations is C2
30 = 435 to avoid comparisons between the same

data batch and model structure. In other words, a restriction of i 6= j will be considered for

obtaining the average divergence values from D(λpin‖λq jm), i, j ∈ [1,30] when p = q.

Noting that the ground truth data group of 2000 replays only has one data batch, the

average divergence values are calculated from 1× 30 = 30 resulting values compared to

other data groups with 30 batches. By averaging divergence values over batches, we can

account for the variance in players’ strategies. Once these values are calculated, we can

plot a divergence mesh for a comparison of two data groups.

For example, Figure 3.4 illustrates the divergence mesh that can be plotted for all

196 comparisons between 1000 and 2000 replay data quantity groups. HMM models are

trained with different numbers of hidden states for both data groups on each data batch, so
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Figure 3.4: A divergence mesh example of the comparison between models developed

from 1000 and 2000 replays. Each of the 196 points includes 30 comparisons.

the X and Y-axes represent the number of states in models from the two data groups re-

spectively. The Z-axis, the vertical axis, represents the divergence values calculated from

a combination of two models with certain model structures. For example, the first model,

λ1000,n=15, developed from a data batch of 1000 replays has a model structure of 15 hid-

den states, and the second model, λ2000,n=2, developed from the ground truth data batch of

2000 replays, has a 2-state structure. Then, as shown in Figure 3.4, the divergence value

between these two models, D(λ1000,n=15‖λ2000,n=2), is about 0.162. In total, a divergence

mesh contains 196 such divergence values. Since the mesh is in three dimensions, the

shape of the mesh or the changing trend of values based on hidden state numbers can also

illustrate the relation between model structures.

Understanding that the minimum divergence value is 0 based on Equation (3.1), the

smaller the divergence is, the higher the similarity between a pair of HMM models. Simi-
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larly, the smaller the average distance between a mesh and the X-Y horizontal surface, the

higher the similarity between the underlying players’ behavior patterns and strategies from

a pair of data batches. In the Figure 3.4 example, if models have more than 8 states, they

share high similarity since the upper right corner of the mesh is close to a horizontal sur-

face and has divergence values lower than 0.05. We propose that HMM models are similar

and stable in these regions of low and consistent divergence metrics.

3.2.4 Analysis Results

Once divergence distance model comparisons were computed for all possible pairwise

comparisons of HMM models created with 5, 10, 20, 30, 50, 100, 200, 500, 1000, and

2000 replays, we plotted them to investigate the variation tendencies across the meshes, as

shown in Figure 3.5. From such variation trends, we can investigate the potential impact

from the number of data sequences on the stability of the strategy modeling technique and

also determine the minimum required number of data sequences.

As shown in Figure 3.5, for all numbers of data sequences, we compared corresponding

models and plotted divergence meshes respectively. The upper-right half of Figure 3.5 con-

tains divergence meshes, and given the diagonal symmetry, the lower-left half represents

average values and boxplots of divergence values for the corresponding meshes.

Trends in a Single Mesh

A divergence mesh presents the comparisons between strategy models with different num-

bers of hidden states from two data batches. From the distance between different portions

of a mesh and the horizontal X-Y surface, we can interpret how different model structures

affect a model’s ability to capture players’ general strategies. To better understand such

comparisons, three divergence meshes, shown in Figure 3.6, are selected from Figure 3.5

for further investigation.
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Figure 3.5: Divergence meshes with average values of all comparisons between different

data groups with different quantities.

The divergence mesh in Figure 3.6a represents comparisons between models from 2-15

hidden states developed from the data group of 2000 replays. Since the 2000-replay data

group represents ground truth, this divergence mesh is the benchmark comparison with an

average divergence value of 0.0553, the lowest among all meshes. Such a low average

value is expected because the 2000 replay group contains all data for all individuals.

One interesting observation is the diagonal-valley shape of Figure 3.6a. Such a shape

indicates that if two models from the 2000-replay dataset share similar model structures
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(a) (b)

(c)

Figure 3.6: Divergence meshes of 5 and 2000-replay datasets. (a) The 2000 and 2000-re-

play mesh. (b) The 5 and 2000-replay mesh. (a) The 5 and 5-replay mesh.

(number of hidden states), they share high similarity with divergence values under 0.01.

However, as the comparison moves further away from the diagonal, the divergence between

the two models increases. At the extreme, comparing a 2 hidden state model to a 15 state

model yields a divergence metric of more than 0.15, meaning the models represent widely-

differing player strategies. As noted, in the upper right region above 8 hidden states, the

valley disappears. Such a change is verified by a t-test on the divergence values for blocks

above and below the 8-state mark with a significance level of α = 0.05 (p < 0.001). This

suggests that regardless of the number of states, HMM models with 8 or more hidden states

capture similar abstract strategy information. In other words, people who exhibit 8 or more
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abstract clusters of behaviors adopt very similar strategies in executing their tasks.

Figure 3.6b illustrates comparisons between data groups with 5 (minimum) and 2000

(maximum) replays. This mesh is clearly different from Figure 3.6a with increasing values

and no valley along the diagonal seen in the 2000 replay comparison (Figure 3.6a). The

mesh in Figure 3.6b has an average divergence of 0.2107, the highest among all meshes

shown in Figure 3.6. Such a high value indicates relatively low model similarity, sug-

gesting that models developed from data batches with only 5 replays cannot accurately

represent the player strategies seen in the 2000 replay set. This is not surprising given

that 5 observations cannot capture the variability that a 2000 dataset can. Thus, the high

divergence value of this mesh supports the fact that models developed from these two data

groups are different.

In addition to the high divergence shown in Figure 3.6b, the tilted shape of the mesh

shows that comparisons with 2000-replay models with 6 or fewer states have smaller di-

vergence values than models with 8 or more states. Given that 5-replay models cannot

precisely capture players’ strategies, this fact indicates that 2000-replay models with over-

simplified model structures cannot present players’ strategies well.

Figure 3.6c illustrates the divergence mesh comparison of 5-replay models, with rela-

tively low divergence values at an average of 0.0920. The relative flat shape of the mesh

in Figure 3.6c indicates that models generated from low numbers of observations share

high similarity regardless of hidden state numbers. However, when compared to the flat

region in Figure 3.6a, the 2000 replay comparison models above 8 hidden states have an

average divergence of 0.0180, which is 80.4% lower than 0.0920. Thus, while models

generated from 5 replays may be similar to one another, they are not as similar as models

generated from 2000 replays. The question then becomes how many replays are needed to

approximate the mesh in Figure 3.6a. This answer then forms the basis of understanding

the minimum number of data sequences needed to generate effective strategy models.
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Mesh Pairwise Comparisons

The average value of all divergence points on a mesh can quantitatively illustrate the differ-

ence between players’ strategies and action patterns captured from the models developed

from two data groups with different data quantities. Thus, differences between average

mesh divergence values can indicate how much data is needed to effectively train HMM

strategy models. As shown in the lower-left half of Figure 3.5, each boxplot of divergence

values represents model comparisons between a pair of data groups.

Not surprisingly, the divergence values on the diagonal decrease from 5 replay compar-

isons to the ground truth data at 2000 comparisons. These numbers should be the lowest

since the models with the same numbers of states are compared to one another. The off-

diagonal comparisons should grow with increasing difference between data quantities. For

instance, the divergence mesh average of 5 vs. 5 replays is 0.0920, with the average value

increasing to 0.1897 for the comparison of 5 vs. 100 replays, and then to 0.2107 for 5 vs.

2000 replays. This more than 200% average increase suggests that when the data quantities

are small, resulting HMM models are generally different from models developed from data

groups with large data quantities. However, such a large increasing trend is not obvious in

data groups of 30 or more replays. The mesh average of 30 vs. 30 replays is 0.0572, and

the average of 30 vs. 2000 replays is 0.0642, an increase of less than 12%. Similarly, for

datasets with 50, 100, or more replays, their off-diagonal values are much smaller.

To statistically determine the difference between divergence value distributions in di-

vergence meshes, a series of pairwise comparisons was conducted between all other data

quantities vs. 2000-replay meshes, as well as the 2000 vs. 2000-replay mesh. Under-

standing that the 2000 vs. 2000-replay mesh is a comparison within the same data batch,

the values on the diagonal of this mesh are all zeros because those values represent diver-

gence measures between the same model structures. Thus, the diagonal values were not

considered in pairwise comparisons to avoid skewing comparison results.

51



Table 3.2: Divergence mesh paired Wilcoxon Sign-Rank Test results

paired comparison between 2000 vs.

2000-replay mesh and
z-score p-value

5 vs. 2000-replay mesh 11.2954 < 1.0×10−9

10 vs. 2000-replay mesh 8.4107 < 1.0×10−9

20 vs. 2000-replay mesh 4.7604 1.93×10−6

30 vs. 2000-replay mesh 2.7736 0.0055

50 vs. 2000-replay mesh 2.1554 0.0311

100 vs. 2000-replay mesh 0.9442 0.3451

200 vs. 2000-replay mesh 1.3053 0.1918

500 vs. 2000-replay mesh 1.3236 0.1856

1000 vs. 2000-replay mesh 0.9765 0.3288

The paired Wilcoxon Sign-Rank Test results in Table 3.2 show that comparisons among

the 2000-replay data group and data groups with small data quantities, including 5, 10, and

20 replays, models are significantly different between the benchmark comparison of 2000

vs. 2000 replays (family-wise significance level of α = 0.05/9 ≈ 0.0055). However, for

data groups with 30 and larger data quantities, their comparisons with the 2000-replay

group are not significantly different. This result indicates that HMM strategy models de-

veloped from data batches with 30 or more replays (data sequences) are not statistically

different from the benchmark models trained from 2000 replays. Thus, for this dataset,

30 sequences can be considered as a sufficient data amount for effectively training HMM

models to present operators’ strategies.
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Analysis Conclusion

HMMs can be useful abstractions of supervisory control operator behaviors, giving insight

into the plans and strategies that people form when working with autonomous systems in

order to meet shared goals. However, the number of operators studied in the building of

such models could affect the reliability and generalizability of any resulting HMM mod-

els. To determine how undersampling of operators could affect outcomes and the minimum

number of observations needed to form stable HMMs, we parsed a large dataset of Star-

Craft II game replays to develop and compare HMM models based on 15 observations.

Using divergence values that measure probabilistic similarities between two models,

we systematically reduced a 2000 player dataset to demonstrate how models built from

fewer data sequences compared to those built from all the data. Based on these model

comparison results, we concluded that 30 data sequences produced models that were not

statistically different from models built with 2000 data sequences. Understanding such

a data quantity threshold can reduce the experimental burden and the costs of collecting

human-in-the-loop data. While such knowledge can be used prospectively, it can also be

used retrospectively to evaluate such a decision. Furthermore, models of current data can

be compared against this data to determine degrees of similarity.

In addition to examining the role of data quantity in the development of HMMs for

humans teaming with supervisory control systems, we also demonstrated how meshes of

divergence values from the comparison of two models can indicate model stability. This

effort further illustrated that meshes with low and consistent divergence values indicate

model stability, where changes in the number of hidden states do not cause significant

changes in divergence values. Also, given that the StarCraft II game has several well-

defined tasks, one possible limitation of this work is the generalizability of the result to

other HSC scenarios and other diagnostic models. Thus, further studies are necessary to

investigate these issues.
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3.3 Observation Alignment Approach

This section introduces another important part of the strategy model comparison metric,

the observation alignment approach. HSC scenarios with different interfaces or high-level

tasks will generate different interactions between operators and control systems. Such

interactions are considered as the HMM observations in the strategy model development

process. However, when researchers try to compare models between two datasets with

different numbers of observations, non-equivalent observations can cause mathematical

issues in the model comparison process. Similarly, if researchers try to investigate the

impacts of certain changes before and after a scenario on operator strategies, they face the

same problem of non-equivalent observations caused by potential observation changes in

comparing strategy models. Thus, we propose an observation alignment approach, which

aligns observations to the same number by reducing observation types or clustering certain

observations, for operator strategy model comparisons with non-equivalent observations.

3.3.1 Basic Concept and Analysis Approaches

The fundamental concept of observation alignment is to match observations, or data types,

from two datasets by using the same indices to represent observations. The detailed pro-

cess of aligning observations depends on the similarity between the HSC scenarios that

generate the two datasets. If two scenarios share a similar interface, then the two resulting

datasets may share some observations. In this case, the dataset with a larger number of

observations should reduce or cluster observations that are unique in this dataset to match

the observations in the other dataset. If two scenarios have different interfaces, then the re-

sulting datasets may have different observations. Then, we propose that researchers align

observations based on the occurrence percentage rankings. In this section, we demon-

strate an example of the observation alignment process for model comparisons between

two human-subject experiments conducted on two interfaces.
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The first experiment was conducted on the Research Environment for Supervisory

Control of Heterogeneous Unmanned Vehicles (RESCHU) platform [104, 127], which is

shown in Figure 3.7. RESCHU is a simulation-based platform that allows a single operator

to control multiple UAVs in a supervisory control scenario. It includes both UAV naviga-

tional and imagery analysis tasks where operators focus on the map area when navigating

UAVs and shift their attention to individual vehicle cameras when a UAV reaches a target

[104]. Further experimental details are presented in Appendix C.

The second experiment was conducted on the RESCHU-SA interface as shown in Fig-

ure 3.8. A summary of the RESCHU-SA experiments is introduced in Section 2.3.1, and

further details are presented in Appendices A and B. The RESCHU-SA interface provides

three main tasks, including the two tasks in the RESCHU interface and an additional UAV

hacking detection task. Thus, these two interfaces share observations generated from the

navigational and imagery tasks, and the RESCHU-SA interface has observations for the

hacking detection task.

As shown in Table 3.3, the RESCHU interface generates 7 observations, which are

shared with the RESCHU-SA interface, and the RESCHU-SA interface generates addi-

tional 3 observations. Specifically, observations 1, 2, and 3 are directly related to the UAV

navigational task, and observations 4, 5, and 6 are related to the imagery surveillance task.

Observations 8 to 10 are related to the UAV hacking detection task, in which operators

need to determine if UAVs are hacked and navigated to unexpected destinations.

Since these two interfaces generate different numbers of observations, we need to align

observations to compare HMM models developed from them. The goal of this observation

alignment approach is to reduce observations from the RESCHU-SA interface in order to

match the observations from the RESCHU interface. In other words, this method modifies

the observation selection criteria for RESCHU-SA datasets. Since the hacking detection

task is a unique task in the RESCHU-SA interface, observations related to this task are

clustered to reduce the total observation number.
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Figure 3.7: The RESCHU interface.

Figure 3.8: The RESCHU-SA interface.

56



Table 3.3: Observations from the RESCHU and RESCHU-SA experiment platforms

Shared observations in both interfaces

1 Add waypoint 2 Move waypoint 3 Delete waypoint

4 Move endpoint 5 Switch target 6 Engage task

7 Monitor UAV

Unique observations in the RESCHU-SA interface

8 Perceive hacking 9 Detection decision 10 Adjust zoom level

Based on the HMM model notation mentioned in Section 2.2, assume that model λ1

is developed from RESCHU experiments with M1 = 7 observations and model λ2 is de-

veloped from RESCHU-SA experiments with M2 = 10 observations. Thus, the first model

has fewer observations than the second model. To align such observations, data points in

the λ2 training dataset, which is Oλ2 , need to be re-screened to match the M1 observations.

3.3.2 The Viterbi Propagation with Observation Reduction

With this observation reduction approach, the number of observations in λ1 and λ2 are

aligned to M1 such that the dataset Oλ2 is reformulated to M1 types of observations as Oλ1 .

Thus, the emission matrices of λ1 and λ2 share the same number of columns, M1. Applying

λ1 and λ2 to a one-dimensional sequence Oseq1 = (o1,o2, · · · ,ot), the Viterbi propagation

in Equation (3.1) can be updated for both models.

Vλ1:t,st = max
st∈S1

(bλ1:st→ot ·aλ1:st−1→st ·Vλ1:t−1,st−1) (3.5)

Vλ2:t,st = max
st∈S2

(bλ2:st→ot ·aλ2:st−1→st ·Vλ2:t−1,st−1) (3.6)

Given that both models contain M1 types of observation, they share the same expectations

of emission probabilities.
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In an HMM model, a higher number of hidden states could lead to a lower expectation

of state transition probabilities and a highly differentiated model structure with a higher

model complexity. However, a high hidden state number could cause high corresponding

emission probabilities. Thus, regardless of the number of hidden states, different model

structures would only have limited influence on the product of ast−1→st ·Vt−1,st−1 if models

share the same number and type of observations.

Therefore, the difference in model likelihood values between both HMM models in

Equations (3.5) and (3.6) would only be affected by the underlying patterns in the dataset,

rather than by the Viterbi algorithm propagation process. In this case, the divergence mea-

sure value, which is directly calculated from log(P(Oall|λ1)) and log(P(Oall|λ2)), will

reflect the quantitative measure of the similarity level between the two models more pre-

cisely. Thus, the observation reduction method preserves information from the original

observation at a different abstract level by re-selecting observations. While this method

will not significantly affect the resulting model development and comparison processes

based on the theoretical analyses, a sensitivity test is needed for justification.

3.3.3 The Observation Reduction Sensitivity Test

To understand the reliability of such an observation reduction approach, a sensitivity test

was conducted to evaluate how collapsing observations impacted the overall divergence

distance metric by utilizing the strategy model comparison metric and developing diver-

gence meshes. Considering that collapsing observations may cause loss of information, it

is necessary to ensure that collapsing certain observations will not significantly change the

divergence metrics.

Data sequences collected from the RESCHU-SA experiments were categorized into

two data batches based on the order of experimental sessions. The sensitivity test was

conducted on these two data batches. Given that the hacking detection task was uniquely
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embedded in the platform, we combined hacking detection-related observations based on

different levels of abstraction. In order to understand the impact of collapsing the data

from 10 to 7 observations, the revised data selection criteria for 7, 8, and 9 observations

are shown in Table 3.4.

Table 3.4: Observation reduction criteria for the sensitivity test

7 observations 8 observations 9 observations 10 observations

1 Add waypoint

2 Move waypoint

Same as 7

observations

Same as 7

observations

Same as 7

observations

3 Delete waypoint

4 Move endpoint

5 Switch target

6 Engage task

7
Hacking

detection
Monitor UAV Monitor UAV Monitor UAV

8 -
Hacking

detection

Hacking

detection
Perceive hacking

9 - -
Adjust zoom

level

Detection

decision

10 - - -
Adjust zoom

level

With the revised observation-reduced criteria shown in Table 3.4, HMM strategy mod-

els with all possible numbers of hidden states were retrained on the realigned datasets using

the same methods discussed in the model development section. Then, visualizations of di-

vergence measures between the HMM models were created following the divergence mesh
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development process. Such divergence meshes were composed of divergence values from

all possible combinations of model comparisons based on the different number of hidden

states, or model structures.

As shown in Figure 3.9a, two divergence meshes represent the 7 and 10 observation

model comparisons from the two RESCHU-SA data batches with corresponding observa-

tion reduction criteria. The 8 and 9 states were omitted for clarity but shared the same

space. Quantitatively, the ranges of the average divergence values of these four meshes are

all within 0.02− 0.05 as shown in Figure 3.9b. Mann-Whitney tests with a family-wise

significance level of ∼ 0.008 (0.05/6) were conducted on the divergence values between

the two meshes. The statistical results show that the distribution of divergence values of

both 8 and 9 observation meshes are significantly lower than the divergence distribution in

the 10 observation mesh (p < 0.001 for both comparisons). However, the value distribu-

tion in the 7 observation mesh is not significantly different from the 10 observation mesh

(p = 0.017 > 0.008).

Thus, although the observation reduction criteria of 8 and 9 observations may change

the underlying patterns in datasets and affect model comparisons with the original dataset

of 10 observations, the reduction criteria of 7 observations only introduce a limited influ-

ence on the divergence measures. In this case, all hacking detection related observations

could be collapsed to a single observation. In other words, the observation selection crite-

rion for RESCHU-SA experiment models can follow the 7-observation rule instead of the

original 10 observations without significant loss of information.

Thus, this section presents the observation alignment approach for comparing operator

strategy models developed from similar HSC scenarios with non-equivalent observations

by reducing observation types and re-parsing data into a higher level of abstraction. A sen-

sitivity test was conducted based on a dataset collected from the RESCHU-SA experiment

to show the potential impact of reducing observations related to a specific task.
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(a)

(b)

Figure 3.9: The observation reduction sensitivity test. (a) Divergence value meshes based

on different observation reduction criteria. (b) Boxplots of the divergence values.
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3.4 Chapter Summary

This chapter presents the development of the operator strategy model comparison met-

ric, which is the first main contribution of this dissertation. The purpose of building

such a comparison metric is to comprehensively and quantitatively measure the differ-

ence between HMM-based operator strategies extracted from HSC scenarios. By utilizing

this comparison metric, researchers can quantitatively measure the magnitude of potential

impacts from scenario changes on operator strategies in order to evaluate such changes.

Specifically, a data quantity prerequisite and an observation alignment approach are de-

scribed in this chapter as two important parts of the comparison metric.
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Chapter 4

Quantitative Operator Strategy Comparison
References

The previous chapter presents the operator strategy model comparison metric based on

the divergence measure with two prerequisites of the data quantity requirement and the

observation alignment approach. This comparison metric provides researchers quantitative

measures of differences between strategy models developed from various HSC scenarios

with different settings. However, the practical meaning of the magnitudes of quantitative

model difference measures is still not clear to researchers. For example, it is not known

whether the average divergence distance value represents a significant, or a negligible,

impact on operator strategies in HSC settings. Thus, comparison references are needed as

baselines for researchers.

This chapter provides quantitative strategy comparison references by developing and

comparing operator strategy models from multiple HSC human-subject experiments with

certain factor changes, such as different operator groups, similar control interfaces with

additional tasks, and different scenarios. With such resulting references, researchers can

quantitatively evaluate whether specific changes in their HSC scenarios can significantly

affect operator strategies and the possible magnitude of the impacts. This chapter first

presents the development of the strategy model comparison baselines, which represent

general operator individual strategy variances across HSC scenarios. This chapter also

presents a continuum of strategy model comparisons to generate a continuous reference

metric covering different changes in HSC scenarios for researchers.
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4.1 Comparisons 1 and 2

This section presents the strategy model comparison baseline. This reference is developed

between two data batches collected from two human-subject experiments respectively with

the same participants and the same control interface with repeated settings. Thus, this

reference is expected to present the least difference between operator strategies since the

same operators executing the same tasks align with the human notation of sameness. Then

this baseline will be compared to increasingly different scenarios.

4.1.1 Data Generation and Experiment Sessions

In order to establish comparison references, model training data for such a continuum

of strategy model comparisons was collected from human-subject experimental sessions

where participants controlled multiple drones to conduct high-level tasks using two differ-

ent interfaces [127, 128, 62, 129]. Experimental sessions were conducted on the RESCHU

interface [104], shown in Figure 3.7, and the RESCHU-SA interface [62], shown in Fig-

ure 3.8. Their interfaces are introduced in Section 3.3, and other detailed descriptions

about both interfaces and experimental sessions are illustrated in Appendices A, B, and C.

Specifically, four experimental sessions were conducted using the RESCHU-SA interface.

The visualization shown in Figure 4.1 illustrates all strategy model comparisons related

to RESCHU and RESCHU-SA experimental sessions. Four comparisons between strat-

egy models were conducted to quantitatively measure the differences in operator strategies

across these experimental sessions as listed in Table 4.1.

In addition to these four comparisons, an extra model comparison was also conducted

to explore operator strategy differences with different interfaces and tasks. Such a com-

parison was between the StarCraft II game mentioned in Chapter 3 and the RESCHU-SA

interface. Thus, as listed in Table 4.1, five strategy model comparisons are included in the

continuum in this chapter.
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Figure 4.1: Comparisons between RESCHU and RESCHU-SA experimental sessions.

In the first comparison between Sessions 1 and 2 within the RESCHU-SA interface,

strategy models were compared with the same interface, tasks, and participants. Thus,

the expectation of the divergence measure of this comparison would be the least. This

comparison is considered as the baseline for no significant difference in strategy model

comparisons. This baseline also presents the strategy variety introduced by participants’

individual variance.

For the second comparison among Sessions 1, 2 and 3, we compared the same interface

and same task, but with different groups of operators. Our expectation was that this com-

parison would only yield a slightly increased divergence measure because of the potential

variance brought by different operators. The third comparison was between Sessions 3

and 4, which shared the same participants and tasks, but with slightly modified interfaces.
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Table 4.1: Comparisons between experimental sessions and interfaces

Comparison Scenario settings Corresponding sessions

1 Same participants, tasks, interface Session 1 vs. Session 2

2
Different participants, same tasks

and interface
Sessions 1+2 vs. Session 3

3
Same participants and tasks,

modified interfaces
Session 3 vs. Session 4

4
Different participants, additional

task, related interfaces
RESCHU vs. RESCHU-SA

5
Different participants, task,

interfaces
StarCraft II vs. RESCHU-SA

Session 4 provided a decision support system, which was not embedded in other sessions,

to assist participants in UAV hacking detection tasks. The expectation of this comparison

was to have a higher divergence measure than the baseline and the second comparison.

The fourth comparison, which was between the RESCHU and RESCHU-SA inter-

face, was expected to present a larger divergence measure than the third comparison. Be-

cause the RESCHU-SA interface is a modified version of the RESCHU interface, and the

RESCHU-SA interface provides an additional task of UAV hacking detection. The fifth

comparison, which was between the StarCraft II game and the RESCHU-SA interface,

was expected to have the highest divergence measure among these comparisons because

the participant groups, interfaces, and tasks were all different such that the resulting strat-

egy models were expected to be significantly different.

The visualization of the hypothesis of quantitative strategy model comparisons with

increasingly different scenarios is shown in Figure 4.2, in which the horizontal axis repre-
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Figure 4.2: The model comparison hypotheses based on increasingly different scenarios.

sents the relative magnitude of model comparisons. These hypotheses are verified in this

chapter with quantitative magnitude measures.

4.1.2 Model Comparison Results

HMM strategy models were developed based on observations, which were parsed from op-

erator actions, collected during experiment sessions as listed in Table 2.2. As mentioned in

the background section, HMM models were trained using the unsupervised multi-sequence

Baum-Welch algorithm [77], which is a common expectation-maximization (EM) algo-

rithm. Specifically, to increase the confidence of the training results, more than 100 ran-

domly generated initializations were used in the HMM model training process for each

specific model structure with a certain number of hidden states, and the resulting model

with the highest data fitting likelihood was selected.

To quantitatively determine the baseline, or the “zero” benchmark point, of strategy

model differences, we focused on comparing the two experimental sessions conducted on

the RESCHU-SA interface with the same participants as highlighted in the red rectangle in

Figure 4.3. Specifically, the 10 RESCHU-SA interaction observations, shown in Table 2.2,
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Figure 4.3: The baseline comparison and the comparison with different participant groups.

were used for this comparison and divergence meshes were plotted. Understanding that

the RESCHU-SA interface provides three primary tasks of the UAV navigational task, the

imagery analysis task, and the UAV hacking detection task, we consider that the minimum

hidden state number in model comparisons is 3. Also, given that hidden states represent

abstract cognitive groupings, the maximum number of hidden states should not be greater

than the number of observation types, which is 10.

Similar to the baseline comparison, we compared strategy models developed from Ses-

sions 1, 2, and 3 using the strategy model comparison metric to evaluate the potential

impact of different participant groups on operator strategies. As highlighted in the yellow

rectangle in Figure 4.3, the first set of strategy models were developed from the combined

dataset of Sessions 1 and 2, and the second set of models were developed from Session 3.
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Figure 4.4: Divergence value meshes for the baseline comparison and the comparison with

different participant groups.

While Sessions 1 and 2 shared the same group of participants, Session 3 had another group

of participants. Thus, the comparison between strategy models developed from these two

data batches illustrate the magnitude of the potential impact of different participants on

operator strategies.

As shown in Figure 4.4, we plotted both meshes for these two comparisons, which

shared an average divergence value of 0.045 with SD (standard deviation) = 0.029 and

SD = 0.033, respectively. Thus, the baseline for strategy model comparisons without any

changes in the HSC scenario can be considered as an average divergence value of 0.045.

The two meshes in Figure 4.4 are interlaced and cannot be distinguished clearly. A non-
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parametric Mann-Whitney test with a significance level of α = 0.05 was conducted and

showed no significant difference between these two divergence value distributions (p =

0.768). Given that both experiments had more than 35 participants, the high similarity

between these two comparisons indicates that different participant groups introduce limited

variability in participant overall strategies between experimental sessions with the same

interface and tasks. These results align with the experimental data in that there was no

significant difference in overall participant performance. Thus, this divergence mesh result

establishes the baseline that in terms of human-in-the-loop strategies in an HSC scenario,

what it means to be similar or have no impact from factor changes can be roughly measured

at 0.045 using the strategy comparison metric.

4.2 Comparison 3

This section presents a strategy model comparison between Sessions 3 and 4 with the

same participants and tasks, but slightly different interfaces. While both Sessions 3 and 4

are conducted on the RESCHU-SA interface, Session 4 provides a decision support system

for participants to assist them with the UAV hacking detection task. This comparison is

expected to have a larger divergence measure than the baseline. Also, this comparison

result can provide insights into the effectiveness of such a support system.

4.2.1 Scenarios with Different Interfaces and an Assistant Tool

The visualization of the comparison between Sessions 3 and 4 is shown in Figure 4.5. Ses-

sion 3 repeated the experimental settings in Sessions 1 and 2, but with a different group of

participants. Session 4 shared the same participants with Session 3, and Session 4 also re-

peated the three major tasks provided by the RESCHU-SA interface. Further experimental

details of Sessions 3 and 4 can be found in Appendix B.
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Figure 4.5: Model comparisons between different interfaces with an assistant tool.

It is worth noting that in Session 4, the RESCHU-SA interface was embedded with a

decision support system, which could provide suggestions and simplify the procedure of

detecting potential UAV hacking events for participants. This decision support system was

developed based on participants’ hacking detection performance and hacking event loca-

tions in Sessions 1 and 2 since all these experimental sessions shared the same simulated

map as shown in Figure 3.8. The difference on the map area when participants received

UAV hacking notifications is illustrated in Figure 4.6.

In Sessions 1, 2, and 3, when hacking notifications occurred and participants acknowl-

edged the notification, the map area remained the same. Participants were required to

select notified UAVs and determine potential hackings by themselves. Figure 4.6a illus-

trates an example of a notified UAV without any extra support. In Session 4, when the
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(a) (b)

Figure 4.6: RESCHU-SA interfaces with/without the hacking detection support system.

(a) The map area without the support system. (b) The map area with the support system.

interface prompted a hacking notification, a pop-up window emerged simultaneously with

suggestions of adding waypoints or changing assigned endpoints for the notified UAV. An

example of the suggestion window is shown in Figure 4.6b. Participants can accept such

suggestions to detect potential hackings or reject suggestions if they tend to follow their

detection strategies. If they accept a waypoint-oriented suggestion as in Figure 4.6b, a new

waypoint, as highlighted in green, will be automatically added to the trajectory of the no-

tified UAV, and the UAV will start to approach the new waypoint immediately. As shown

in Table 4.2, a new observation, “Suggestion decision”, was parsed and collected from

Session 4 to represent the action of accepting or rejecting suggestions from the decision

support system.

In order to compare strategy models developed from Sessions 3 and 4, observations

from these two sessions need to be aligned. Thus, the “Suggestion decision” observation

in the Session 4 dataset needs to be clustered with another observation. Considering that to
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accept or reject suggestions is also a part of the initialization process of hacking events, the

“Suggestion decision” observation is clustered with “Perceive hacking” as one observation.

Thus, after reparsing observations in Session 4, datasets from these two sessions share the

same 10 observations shown in Tables 2.2 and 4.2.

Table 4.2: HMM observations from Sessions 3 and 4 in the RESCHU-SA interface

Shared observations in Session 3 and 4

1 Add waypoint 2 Move waypoint 3 Delete waypoint 4 Move endpoint

5 Switch target 6 Engage task 7 Monitor UAV 8 Perceive hacking

9 Detection decision 10 Adjust zoom

Unique observations in Session 4

11 Suggestion decision

4.2.2 Model Comparison Results

HMM models were developed on the re-parsed datasets and compared based on the strat-

egy model comparison metric. The strategy model comparison results are shown in the

divergence mesh in Figure 4.7. The average divergence value of this divergence mesh is

0.068 with a standard deviation of 0.041. The divergence value distribution of this diver-

gence mesh was compared to the baseline mesh and the second comparison mesh men-

tioned in the previous section via non-parametric Mann-Whitney tests with α = 0.05. Test

results showed that the divergence distribution of this mesh was significantly different from

the other two meshes (p < 0.001).

Compared to the average divergence (0.045) of the baseline, the average of this compar-

ison is 0.068−0.045 = 0.023 higher. Thus, utilizing an assistant tool, the decision support
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Figure 4.7: Divergence meshes for the model comparison between Sessions 3 and 4.

system provided in Session 4, in the RESCHU-SA interface will introduce changes in op-

erator strategies. Such strategy changes can be quantitatively measured by an extra 0.023

divergence increase above the comparison baseline. Since the divergence value distribution

of the second comparison mesh was not significantly different from the baseline mesh, dif-

ferent operator groups did not introduce changes to operator strategies. Thus, we can infer

that applying an assistant tool in HSC scenarios will introduce a clear impact with a larger

divergence metric measure on operator strategies than just changing operator groups.

This comparison result also provides a measure of the effectiveness of the decision

support system. Researchers can evaluate the usage of the assistant system from such a

measure. Based on the usage analysis of the decision support system, participants accepted

74



65.4% of all suggestions for hacking detections and rejected the other suggestions. Thus,

the intended design of this assistant tool did not work as desired. This fact is also reflected

in the limited increase of the average divergence measure in this divergence mesh. While

the assistant tool affected operator strategies, its impact was measured with a limited and

relatively small divergence value increase of 0.023 from the baseline. Based on the de-

tailed analyses with developing hacking detection strategy models mentioned in Appendix

B, participants were revealed to insist on their preliminary detection strategies even with

supports from the assistant tool. In summary, this section demonstrates that strategy model

comparisons can provide researchers insights about the effectiveness of intended interface

designs, or applying supportive functions, by quantitatively measuring potential impacts

on operator strategies.

4.3 Comparison 4

This section presents the fourth comparison with different interfaces and an additional

task. This comparison provides reference for researchers on how an additional task in

HSC scenarios potentially affects operator strategies. The observation alignment approach

was utilized for comparing models developed with non-equivalent observations.

4.3.1 Scenarios with Different Interfaces and an Additional Task

The comparison presented in this section is between the RESCHU and RESCHU-SA in-

terface, as shown in Figure 4.8. Specifically, data from Sessions 1 and 2 were used as

the RESCHU-SA dataset because Sessions 1 and 2 shared the same experimental set-

tings. Table 3.3 shows the observations for HMM strategy model development from the

RESCHU and RESCHU-SA interfaces. While these two interfaces share 7 observations,

the RESCHU-SA interface contains 3 other observations related to the additional task of
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Figure 4.8: Model comparisons between different interfaces with an additional task.

the UAV hacking detection. Thus, we need to align observations for these two interfaces

in order to conduct strategy model comparisons. Based on the observation reduction sen-

sitivity test mentioned in Section 3.3, we can compare HMM models between these two

interfaces using the re-parsed 7 observations shown in Table 4.3.

4.3.2 Model Comparison Results

The model comparison results are shown in the divergence mesh in Figure 4.9, which illus-

trates the differences in strategy models developed between the RESCHU and RESCHU-

SA interfaces. The divergence mesh has a value range of 0.40− 0.75, which indicates a

relatively large difference compared to the baseline comparison. The average divergence
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Table 4.3: Revised HMM observations from RESCHU and RESCHU-SA interfaces

1 Add waypoint 2 Move waypoint 3 Delete waypoint

4 Move endpoint 5 Switch target 6 Engage task

RESCHU 7 Monitor UAV

RESCHU-SA 7 Hacking detection

value of this mesh is 0.563 (SD = 0.078). Comparing to the value ranges of the two diver-

gence meshes mentioned in Section 4.1, we can infer that the divergence distance metric

captures differences between the two interfaces. Because the RESCHU-SA interface con-

tains an additional primary task of UAV hacking detection, which is not provided in the

original RESCHU platform, participants using RESCHU-SA had clearly different strate-

gies and behavioral patterns compared to those using RESCHU.

It is worth noting that the meshes of Comparisons 1 and 2 are relatively flat. This

flatness indicates model stability in capturing operator general strategies with 3 or more

hidden states when two scenarios share the same interface and primary tasks. At the same

time, the Comparison 4 mesh is relatively uneven across comparisons with all possible

hidden states. Thus, comparisons of HMM strategy models with different interfaces may

be less stable, which could be a result of the non-equivalent observation manipulations.

Future studies can investigate how such manipulations affect the quantitative measures.

In this analysis, the most similar comparison is between the same operators using the

same interface for the same tasks, Comparison 1. Comparison 1 is also considered as the

strategy model comparison baseline. Comparisons 4 looks at different interfaces and tasks

with different operators. The difference between these means can be measured at 0.518.

Understanding that different groups of operators only introduce limited variance to the

divergence metrics, such an mean difference can be considered as a quantitative similarity
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Figure 4.9: The divergence mesh for model comparisons between the RESCHU and

RESCHU-SA interfaces.

metric for including an additional primary task in an HSC scenario. However, it remains to

be seen whether this relative difference holds between other interfaces with different tasks

and how it can be leveraged in various applications.

In summary, this section presents a model comparison between the RESCHU and

RESCHU-SA interfaces with different participants and an additional task. This comparison

establishes a quantitative reference for researchers that an additional task in HSC scenarios

could introduce about a 0.518 increase above the baseline in the divergence measure.
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4.4 Comparison 5

This chapter presents a strategy model comparison between two HSC scenarios with dif-

ferent interfaces and tasks. The first scenario is the RESCHU-SA experimental platform,

which is mentioned in the previous sections and chapters. The second scenario is the Star-

Craft II computer game, which is mentioned in Section 2.2. The similarities between these

two scenarios are that both can be considered as common HSC scenarios, and they share a

similar number of high-level tasks. Thus, this section provides a comparison reference for

researchers on how operator strategies will be modeled differently given two HSC scenar-

ios with the same number of tasks but different interfaces and tasks.

4.4.1 Scenarios with Different Interfaces and Tasks

Similar to the strategy model comparisons in previous sections, data collected from Ses-

sions 1 and 2 in the RESCHU-SA interface were used to develop operator strategy models.

All data parsed from the StarCraft II game was also utilized, and this dataset contains only

a single game map and all players selected a specific gaming character to represent a deter-

mined HSC scenario. The overall visualization of model comparisons is shown in Figure

4.10. Similar to the previous section, datasets from Sessions 1 and 2 are combined since

they share the same participants, interface and tasks. Then, the strategy model comparison

was conducted between the StarCraft II and the RESCHU-SA interface.

Observations from the RESCHU-SA interface are shown in Table 2.2 and observations

from the StarCraft II game are shown in Table 3.1. Given that these two scenarios with

different interfaces do not share any observation and that the StarCraft II game generates

15 observations, observation alignment is needed to compare strategy models across these

two scenarios. The observation alignment process between RESCHU and RESCHU-SA

in the previous section is straightforward such that we only need to reduce observations in

the RESCHU-SA interface by reparsing hacking detection-related observations. However,
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Figure 4.10: Model comparisons between the RESCHU-SA experiment sessions and the

StarCraft II game.

observations from the StarCraft II game and the RESCHU-SA interface need to be aligned

via a slightly complex approach.

The observation alignment process for this strategy model comparison contains two

main steps: 1) reduce StarCraft II observations to the same number as the RESCHU-SA

observations by clustering some observations, and 2) align observations based on the oc-

currence frequency rankings. Understanding that StarCraft II game generates 15 observa-

tions, the first step is to reduce the observation number to 10, which is equal to the number

in RESCHU-SA. Some observations with a similar meaning or those that represent similar

actions are clustered as a single observation, such as “Cancel” and “Stop” being combined

as “Terminate”. Other observations, which usually occur sequentially and represent a sin-

gle task, are clustered as a new observation, such as “Lift” and “Land”, which represent

when players manage and relocate constructions, are clustered as “Lift/land”. The revised

StarCraft II observations are listed in Table 4.4.

After reducing StarCraft II observations from 15 to 10, the next step is to align obser-

vations between these two scenarios. The main goal of aligning observations is to have

the same mathematical representations, or indices, to present two sets of observations from
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Table 4.4: Revised StarCraft II observations

1 Effect 2 Lift/land 3 Harvest 4 Attack

5 Terminate 6 Morph 7 Train 8 Load/unload

9 Rally 10 Build

two datasets in the divergence measure calculation. For these two datasets, we utilized

the observation occurrence frequency rankings in each dataset to align observations. We

consider that observations with the same frequency ranking represent a similar significance

in a scenario. The occurrence frequency-based observation alignment result is shown as

Figure 4.11. First, we determined the occurrence frequency ranking in the RESCHU-SA

interface and obtained the pairing information between the observation indices and rank-

ings. Then we obtained the rankings from the StarCraft II game and reordered them to the

RESCHU-SA observation rankings. Thus, we can use a single set of indices to represent

observations from both interfaces to develop divergence meshes.

4.4.2 Model Comparison Results

Observations are re-parsed and operator strategy models are retrained for the StarCraft II

dataset. Then we developed a divergence mesh as shown in Figure 4.12. This mesh rep-

resents the comparison between StarCraft II models and RESCHU-SA models developed

from Sessions 1 and 2. The average divergence value of this mesh is 0.654 (SD = 0.081),

which is higher than the comparison with an additional task shown in the previous section.

This divergence meshes shows a consistent and relatively flat shape with slight variance.

This fact shows that regardless of model structures, the difference between the underlying

patterns in these two datasets are consistent and stable. In other words, the difference be-

tween operator strategies from these two scenarios overwhelms the difference in strategies
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Figure 4.11: Observation alignment based on occurrence percentage rankings.

captured by different model structures with different abstract levels.

In this section, we established a strategy model comparison reference for HSC scenar-

ios with different interfaces and tasks. This comparison reference is measured at 0.654

using the strategy model comparison metric. This measure has the highest magnitude

among all measures in this continuum of strategy model comparisons we conducted. Such

a result is expected because different HSC scenarios with different interfaces and tasks are

considered as the largest changes comparing to other scenario changes. This quantitative

reference also illustrates relative magnitude differences to other comparison references.
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Figure 4.12: The divergence mesh for model comparisons between the StarCraft II and

RESCHU-SA interfaces.

83



4.5 Chapter Summary

This chapter presents a continuum of five strategy model comparisons, including 1) a strat-

egy model comparison baseline, which is measured at 0.045 and presents the benchmark

of comparisons across HSC scenarios with the same settings, 2) a model comparison refer-

ence with different participants, sharing the same divergence average with the baseline and

showing that changing operators while keeping other settings will not significantly affect

operator strategies, 3) a model comparison between modified interfaces with an assistant

tool, having a divergence average of 0.068 and showing that an additional decision support

system will change operator strategies to a limited degree, 4) a comparison reference be-

tween related interfaces with an additional task, demonstrating that an additional task can

result in an increase of 0.518 on divergence measures from the baseline, and 5) a compari-

son reference between HSC scenarios with different interfaces and tasks, showing that the

difference between operator strategies modeled from two different HSC scenarios can be

measured at a divergence value range of 0.654. The average divergence values of these

comparison meshes were visualized in Figure 4.13, illustrating the magnitudes of these

average divergences and quantitative distances among them.

Figure 4.13: A continuum of strategy model comparisons.
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Given the hypothesis of strategy model comparisons with increasingly different sce-

narios in Figure 4.2 in Section 4.1.1, model comparison results in this chapter verified this

comparison ranking hypothesis. As the baseline, the comparison with the same partici-

pants, interface, and tasks presents the least divergence measure, representing the highest

similarity. While different participant groups were expected to slightly affect operator

strategies, model comparison results showed changing participants did not affect strategy

model outcomes.

An assistant tool embedded in a slightly modified interface was expected to introduce

certain changes in operator strategies, and model comparison results verified this impact.

Also, the factors of additional tasks and different interfaces brought significant impact

to operator strategies as expected. Furthermore, model comparison results illustrated the

magnitudes of strategy difference measures for these factors. This continuum of strategy

model comparisons established a preliminary reference framework for illustrating the mag-

nitude of impacts on operator strategies. Future studies can extend this reference frame-

work by exploring influences from other HSC factors.

With such references, researchers can quantitatively evaluate the impacts on operator

strategies from applying certain changes, such as intended designs and additional tasks, in

HSC scenarios. Also, the development of such a continuum of references demonstrates the

general process of evaluating operator strategy changes across various HSC scenarios.
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Chapter 5

Conclusion

As the human-automation interaction and human supervisory control-related applications

develop rapidly, it is important to investigate operator strategies and measure how various

changes in HSC scenarios may affect operator strategies. With measures of potential im-

pacts from such changes, researchers can evaluate the magnitude of impacts and determine

the effectiveness of specific designs in control interfaces or training programs for opera-

tors. This research first proposes an operator strategy model comparison metric and then

establishes a set of strategy comparisons as a continuum of quantitative references.

5.1 Dissertation Summary

This dissertation started with the motivation for this research in Chapter 1, which was

in the human-automation interaction field and specifically focused on human supervisory

control scenarios. While many studies have been conducted to investigate how different

control settings or different training programs may affect operator performance in con-

ducting tasks, no previous research has quantitatively evaluated potential impacts from

such scenario changes on operator strategies. Thus, the main gaps between previous stud-

ies and this research were 1) the methods of quantitatively comparing operator strategies

to measure the differences between strategies and 2) the practical interpretations of such

measures and how such measures could benefit HSC scenarios. Such gaps led to two main

questions of this research: 1) how can operator strategies be quantitatively compared, and

2) what are the practical meanings of such strategy difference measures.

Chapter 2 first presented the background of human supervisory control with existing

techniques for modeling human operators at different levels. Based on the results of pre-
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vious studies, this research utilized the hidden Markov model to model operator strategies.

Then this chapter illustrated the detailed structures of hidden Markov models with the strat-

egy model development process. Also, this chapter provided an example of how to develop

operator strategy models for a remote drone control HSC scenario from a simulation-based

human-subject experiment.

Using HMMs as operator strategy models, researchers can investigate operator strate-

gies. Then the next step was to compare strategy models to obtain the model difference

measures. An operator strategy model comparison metric was proposed in Chapter 3. This

comparison metric utilized the divergence distance measure to quantitatively calculate the

difference between HMM strategy models. In this research, the divergence measure was

extended to a divergence mesh method to provide a systematic and comprehensive dif-

ference measure between strategy models. By developing strategy models on existing

datasets and comparing models using divergence meshes, two requirements were proposed

as prerequisites for the comparison metric. Such prerequisites included 1) the data quantity

requirement – 30 or more operator data sequences are required and also likely sufficient for

effectively modeling operator strategies in HSC scenarios and 2) the observation alignment

approach – if strategy models contain non-equivalent observations, then researchers need

to realign observations in training datasets by reparsing observations and retraining models

to conduct model comparisons.

Given the quantitative measures of strategy model differences, it was still unclear how

the magnitude of such comparison measures map to meaningful degrees of difference in

HSC scenarios. Thus, Chapter 4 presented a continuum of strategy model comparisons to

establish baselines and references of strategy model comparisons to quantitatively illustrate

the impacts from factor changes in HSC scenarios on operator strategies. This continuum

of comparisons included 1) a general operator strategy model comparison baseline, 2) a

comparison reference with different groups of operators, 3) a comparison between modi-

fied interfaces with an assistant tool, 4) a comparison reference between related interfaces
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with an additional task, and 5) a comparison across two HSC scenarios with different in-

terfaces and tasks. This continuum provided references for researchers to measure impacts

on operator strategies while applying changes in HSC scenarios by utilizing the strategy

model comparison metric and evaluating such impacts by referring to such references.

5.2 Contributions

The objectives of this research were to 1) describe operator strategies by developing strat-

egy models, 2) develop a quantitative and systematic strategy model comparison metric

to measure differences between operator strategies, and 3) explain practical meanings of

strategy differences by establishing strategy model comparison baselines and references.

Given such research objectives, two major contributions were presented in this research,

including 1) developing a strategy model comparison metric, presented in Chapter 3, and

2) establishing strategy model comparison references, presented in Chapter 4.

5.2.1 The Development of Strategy Model Comparison Metric

In order to fill the gap in investigating impacts on operator strategies, this research pro-

posed a strategy model comparison metric for comparing strategy models and a means to

quantitatively measure strategy differences. The fundamental calculation in the compari-

son metric was the divergence distance measure, which calculated the difference between

two HMM models by evaluating the model fitting probabilities on an evaluation dataset. As

mentioned in Chapter 3, the divergence measure was extended to the divergence mesh by

considering all possible strategy model structures to provide subjective and comprehensive

model comparison measures. Also, from divergence meshes, researchers could investigate

how different model structures, which capture operator strategy information in different

abstract levels, could affect difference measure results. Two important components of the
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metric were also proposed, which were that researchers need to have 30 or more operator

data sequences to effectively model and compare operator strategies and researchers need

to align observations for strategy model comparisons with non-equivalent observations.

Thus, as the first step of investigating impacts on operator strategies, the strategy model

comparison metric with its two components was considered as the first major contribution

in this research.

The procedure in the comparison metric is shown in Figure 5.1. If researchers need

to evaluate if certain changes in their HSC scenarios will affect operator strategies and

cause potential issues, they can utilize this comparison metric and follow this procedure.

The first step is to develop operator strategy models from HSC scenarios. Researchers

need to ensure that they have collected 30 or more data sequences to effectively model

operator strategies. If researchers fail to collect such an amount of data, the resulting

models would be biased because of individual variance and cannot represent the general

operator strategies across a scenario.

Figure 5.1: The flow of the strategy model comparison metric.

The second step for comparing models, if comparing strategy models from two datasets

with non-equivalent observations, is to apply the observation alignment approach. For ex-

ample, a certain change in an HSC scenario may generate new interactions between oper-

ators and control systems, and such new interactions will be parsed as new observations

in the strategy model training process. In this case, these new observations will cause

calculation failures in model comparisons using the strategy model comparisons metric
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because these observations will cause Viterbi algorithm failures in obtaining the model fit-

ting probability values on models developed from the other dataset. Thus, researchers need

to align observations and retrain strategy models for the two datasets for comparisons with

non-equivalent data types by reducing, re-parsing, or re-ranking observations.

Following these two steps, which are two important components of the comparison

metric, researchers can develop divergence meshes to quantitatively measure operator strat-

egy differences. Understanding that this metric requires all possible HMM model struc-

tures to construct divergence meshes, researchers can compare models developed from the

same data batches and investigate the topology of outcome meshes to determine the opti-

mal model structure for describing operator strategies. Moreover, the method of comparing

models from the same dataset can also benefit researchers in determining the optimal train-

ing data parsing criterion.

5.2.2 The Establishment of Strategy Model Comparison References

Researchers need baselines or references to understand how such quantitative measures

would map to practical meanings in HSC scenarios and evaluate the magnitudes of mea-

sures. Such needs led to the second major contribution of this research for which a contin-

uum of strategy model comparisons were conducted to provide quantitative references for

model comparisons among HSC scenarios with various settings.

Five quantitative references established in this contribution include 1) the strategy

model comparison baseline, 2) the comparison reference with the same interface but differ-

ent operators, 3) the comparison between modified interfaces with an assistant tool, 4) the

comparison reference between related interfaces with an additional task, and 5) the com-

parison reference across HSC scenarios with different interfaces and tasks. As mentioned

in Chapter 4, the RESCHU and RESCHU-SA experiment interfaces were utilized for data

collection, and their datasets were used for strategy model development to establish such
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baselines and references. Also, the StarCraft II gaming dataset mentioned in Chapter 3 was

utilized in the fifth reference.

The first comparison of the baseline was developed based on two datasets collected

from experimental sessions with the same settings. This baseline presents the benchmark

point at which, without any factor changes, operators are expected to present the same

general strategies, and such a similarity can be measured at 0.045 using the strategy model

comparison metric. This baseline also illustrates the measure of operator individual strat-

egy variances. The second comparison with different operators presents the same average

divergence measure as in the first comparison. This fact shows that different groups of

operators do not introduce a significant variance in resulting strategy models if researchers

have a sufficient quantity of data.

The third comparison with a modified interface and an assistant tool was measured at a

divergence average of 0.068, which is 51.1% larger than the baseline. While this measure

is larger than the baseline, it can be considered as a relatively small divergence that such

an assistant tool introduced limited impacts on operator strategies. The fourth comparison

with a related interface and an additional task was measured at 0.563, which is over 12

times larger than the baseline. We can infer that the impact from an additional task is more

significant than from an assistant tool. However, further studies are necessary to explain

such a proportionality. Also, the fifth comparison with different interfaces and tasks was

measured at 0.654. This measure shows the impact of changing HSC scenarios is larger

than the impact brought by an additional task. This result is expected because an addi-

tional task can be considered as a partially changed scenario. Based on these quantitative

measures, we can infer the ranking of impacts introduced by various changes in HSC sce-

narios. The relation between such changes and the proportionality and additivity of these

measures is further discussed in the following sections.

With the comparison baselines, researchers can determine if specific changes in HSC

scenarios will impact operator strategies by referring to the comparison baseline. All com-
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parison references provide researchers a ranking of impacts from different factors based

on the comparison metric measures to show the order of the significance levels of such

factors. These references provide a continuum of quantitative measures that researchers

can evaluate the magnitude and significance of how certain changes affect operator strate-

gies. Furthermore, the measures of the impacts from different factors in HSC scenarios

can provide researchers implications about the relations between such factors.

5.3 Generalizability and Limitations

The first main effort of this research is to develop a comprehensive operator strategy model

comparison metric, which provides researchers with a procedure to train and compare HSC

strategy models in order to obtain quantitative difference measures between models. The

expected input for this metric is observation sequences parsed from interactions, such as

mouse clicks or keyboard strokes, between operators and control interfaces. The expected

output of this metric is divergence meshes, which represent differences between model

fitting probabilities on evaluation datasets across all possible model structures using the

divergence measure. Specifically, the average values of divergence meshes are usually

used as the main indicator of model differences.

There are few limitations in using this strategy comparison metric. The first limitation

is that this metric focuses on using hidden Markov models, which cannot take into account

some complex factors, such as temporal and environment factors. Since this comparison

metric focuses on measuring the difference between model fitting probabilities, it is able

to process other Markov models, such as hidden semi-Markov models (HSMMs) and par-

tially observable Markov decision process (POMDP), that also generates model data fitting

likelihoods. However, further studies are needed to ensure that other models can be used

with this comparison metric.

Another limitation is that the comparison process focuses only on the overall model
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fitting probabilities. The divergence measure is the fundamental method for obtaining

quantitative model difference measures, and the Viterbi algorithm is used in divergence

measures. The outcome of the Viterbi calculation is a single model fitting likelihood value.

While such a number illustrates the overall model data fitting probability on a specific

dataset, researchers cannot obtain information about which part of the data fits the model

well. Thus, future studies can gain access to the model fitting probabilities of specific data

portions and investigate details of strategy differences.

The second main effort of this research is to establish a continuum of strategy model

comparisons as baselines and references for researchers to evaluate the magnitude of poten-

tial impacts from various factor changes on operator strategies. These references demon-

strate quantitative difference measures compared to baselines to which an additional task

will bring an extra 0.518 divergence measure to the comparison metric. Also, these refer-

ences provide a ranking for potential impacts from different changes in HSC scenarios and

such a ranking matches the human notion of similarity.

However, this continuum of references also has a limitation in verifying and demon-

strating the additivity of the comparison metric. While ranking and quantifying are two

important concepts in general comparisons, additivity is also important for providing fur-

ther insights into the relations between various changes in HSC scenarios. For instance, the

impact of adding an additional task of UAV hacking detection to the RESCHU interface, as

the RESCHU-SA interface, will cause an increase of 0.518 in divergence measures. How-

ever, it is still unclear that if two additional tasks are added, operator strategies will change

with a quantitative measure of the twice of 0.518.

5.4 Future Work

Given the limitations mentioned in the previous section, five main areas of future work

have been identified: 1) utilize the strategy comparison metric in other HSC scenarios, 2)
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explore the usage of divergence mesh shapes in establishing comparison references, 3) use

the divergence mesh to assess strategy model selections, 4) extend the current continuum

of comparison references for other common changes in HSC scenarios, and 5) investigate

the additivity property of the comparison metric and resulting references.

As the human-automation field and human supervisory control related applications

have developed rapidly, the need to study various HSC scenarios and to investigate op-

erator strategies has also increased significantly. Thus, the first main future work area is

to extend the usage of this strategy comparison metric to other HSC scenarios to establish

comparison references. This work will require more data collected from human-subject ex-

periments with different settings. Also, understanding that divergence mesh shapes gener-

ated from the comparison metric can present how different strategy model structures affect

operator strategies, future research can explore the potential usage of such mesh shapes

in the metric to provide more comparison details. Divergence meshes can also provide

insights about selecting the optimal diagnostic strategy model structures by investigating

the topology of mesh structures.

Given the increasing complexity of HSC scenarios, many other factors may affect op-

erator strategies. While the current references presented in this research only consider a

limited number of factors in HSC scenarios, future studies can extend the current contin-

uum of references by considering other common factors. Similarly, this work also requires

further experiments to collect operator action data sequences. With more comparison refer-

ences, future studies can explore the relations between such reference measures, or impacts

from HSC scenario changes, especially if these measures are quantitatively addable. The

future results can shed light on the underlying principle of operator strategies and the rela-

tion between operator workload and strategies.
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Appendix A

Appendix – The 1st RESCHU-SA Experiment

This appendix describes the experimental motivation, procedure, and results of the first

RESCHU-SA experiment. In summary, the first RESCHU-SA experiment was conducted

on the RESCHU-SA interface, which was a simulation-based experimental platform. Each

participant experienced two sessions, which are Sessions 1 and 2 mentioned in previous

chapters and shown in Figure 4.1.

A.1 Motivation and Background

Unmanned aerial vehicles (UAVs) have significantly increased commercial market and

extensive applications in both civilian and military realms [130]. Many of these UAVs

rely on the Global Positioning System (GPS) for navigation. However, this reliance leaves

UAVs vulnerable to malicious attacks targeting GPS signals. One common attack is GPS

spoofing, in which attackers deceive GPS receivers to override the navigation systems and

redirect UAVs to unexpected destinations [131, 132]. Thus, detecting GPS spoofing attacks

with a high success rate is important for UAV control systems. We propose a human-

autonomy collaborative approach of human geo-location in that humans can aid in the

detection of possible GPS spoofing attacks on UAVs. This approach was evaluated via an

experiment, which was designed and conducted using the RESCHU-SA platform.

A common UAV control scheme is human supervisory control, in which a human oper-

ator monitors the multi-UAV system, intermittently navigating UAVs, and conducting other

higher-level tasks [39]. In this experiment, we assume that human operators are responsible

for the higher-level decision, and autonomous systems are in charge of lower-level UAV

control and navigation operations [43]. UAVs typically rely on an embedded navigation
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system known as GPS, which provides accurate position, velocity, and time information

for GPS receivers in most areas on Earth. GPS receivers can report their locations to UAV

control interfaces to provide location views for operators. However, GPS receivers are

vulnerable to GPS spoofing attacks, in which GPS spoofers generate counterfeit signals to

attack GPS receivers by manipulating the target position, velocity and time [131, 132].

Many researchers have presented autonomous GPS spoofing detection methods [133,

134, 135, 136, 137, 138]. However, false alarms and detection mistakes still exist while ap-

plying autonomous detection techniques [139, 140]. Thus, supplementary detection meth-

ods are needed. In the common design of military UAVs, a UAV is usually equipped with

both a GPS navigation system and a payload camera, whose signal is independent of the

UAV GPS signal [141]. Thus, the UAV payload camera view could be used as an indepen-

dent reference for the detection of GPS spoofing attacks.

In order to utilize a UAV payload camera to detect UAV GPS attacks, interpreting

the UAV’s real-time location through the camera view and comparing this to a certain

landmark or position estimate from a map could be the central mechanism for making such

an assessment. While autonomous localization techniques may have limited performance

[142], human vision has advantages in such complex search and surveillance tasks [143,

144, 145]. Based on human visual advantages, a human operator can potentially aid in

UAV localization and thus detect potential UAV GPS spoofing attacks.

Based on the assumption that UAV cameras can show the true surrounding scene of

UAVs, we propose that human operators can act as supplementary sensors and assist au-

tonomous systems to detect UAV hacking attacks through comparative geo-location be-

tween the camera and map position estimates. In human geo-location, the operator can

compare the non-tempered video feed coming from the UAV to the potentially falsified

GPS location. This allows the operator to detect inconsistencies between these two sensing

feeds. If the operator thinks the location interpreted from the camera view does not match

the location shown on the map, then the UAV is most likely hacked via GPS spoofing.
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A.2 Experiment Settings

An experiment was designed utilizing a modified version of the RESCHU experiment plat-

form [104], known as Security-Aware RESCHU (RESCHU-SA) [103]. RESCHU-SA is a

Java-based single operator with multi-UAV supervisory control simulation platform, which

provides the capability to design multitasking scenarios that include both navigational and

imagery search tasks. Moreover, the platform allows for simulating GPS spoofing attacks,

in which hacked UAVs deviate from their originally assigned path and target to other un-

expected destinations, along with warning notifications that simulate autonomous GPS

spoofing detection systems.

The interface of the RESCHU-SA platform is shown in Figure 3.8. The interface fea-

tures five main components: the payload camera view, message box, control panel, mission

timeline, and map area. The primary objectives for operators in RESCHU-SA are to control

multiple UAVs to 1) perform reconnaissance imagery tasks of counting road intersections

when UAVs reach assigned targets, 2) ensure UAVs do not encounter hazard areas, and 3)

determine whether UAVs are under GPS spoofing attacks.

For this experiment, GPS spoofing attack events followed a pre-defined schedule, un-

known to the participants. When triggered internally, the hacked UAV changed its heading

by a random angle within 30 to 60, or 300 to 330 degrees, which was larger than the human

direction discrimination threshold. A hacking notification appeared 10 to 20 seconds after

the attack event, simulating an external agency detection of a possible GPS spoofing attack.

However, as in real systems, the notification could be a false alarm. In fact, about half of

all notifications in this experiment were false alarms in the pre-defined schedule of each

test session. Once the operator received notification from the system that a certain UAV

was under possible cyber-attack, the operator could then investigate the UAV by check-

ing the UAV’s camera view and matching it against the position of the UAV on the map.

The operator was expected to make a decision before the hacked UAV either exceeded the
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map boundary or the experiment ended. If the operator decided the UAV was hacked, the

operator could override the hacked UAV and send it home.

When UAVs that were not hacked reached a target, the operator engaged in an imagery

task of counting the road intersections from the UAV’s camera view at a pre-specified zoom

level. This side task represents the primary purpose of such a mission, which is typically

information gathering. While engaging in a counting task, the operator was required to en-

ter an answer before the counting task was finished. The counting task allowed us to assess

participants’ performance based on the number of attempted tasks and the task correctness

percentage. The path planner for the UAVs was intentionally suboptimal that the planner

did not necessarily pick the most efficient assignment of UAVs to targets. In addition,

UAVs would possibly encounter hazard areas that appeared and disappeared randomly.

The suboptimal planner and the dynamic nature of hazard areas allowed experimenters to

assess how much spare attention participants could devote to optimize the navigation and

target assignment.

Thirty-six participants took part in this experiment, including 22 males and 14 females.

Age ranged from 19 to 34 years with an average of 25.2 and a standard deviation of 3.8

years. Among the participants, 18 had little gaming experience, 6 had monthly gaming

experience, 5 played video game several times a week, another 5 had weekly gaming ex-

perience, and only 2 had daily gaming experience.

The experiment procedure consisted of four main sections. The first section was a

self-paced tutorial session. The second section was an 18-min practice session to allow

participants to get more familiar with the user interface. The third section included the test

sessions with two scenarios of different task loads, which were counterbalanced in terms

of order of presentation. Specifically, for a high task load scenario, operators controlled

six UAVs with nine different targets and nine hacking events, and in each low task load

scenario, operators controlled three UAVs with six different targets and six hacking events.

The fourth section was the debriefing session.
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In both scenarios, the number of hazard areas, which generated and disappeared ran-

domly, was constantly twenty-one. Each test scenario lasted 18 minutes, and each partic-

ipant completed both high and low sessions. Each participant’s performance scores were

calculated based on the total vehicle damage, the correct percentage of imagery counting

tasks, and the correct percentage of hacking identifications.

A.3 Experiment Results

We used a multivariate repeated-measures ANOVA model and Pearson correlation with a

significance level of 0.05 to analyze data. In data analysis, independent variables included

task load, which task load was experienced first, gender, and video game experience as

a covariate. Task load was a within factor variable. Dependent variables included the

percentage of correct hacking detections, the aggregated damage sustained by vehicles

over a test session, and the overall correct percentage intersection counts per test session.

These variables represent the primary objectives of performing the counting tasks, keeping

vehicles out of the damaging areas, and successfully detecting hacking events.

Table A.1: The confusion matrix of hacking detection decisions in different notifications.

Real hacking notification False alarm notification

Consider UAV hacked 224 40

Consider UAV not hacked 63 207

An important question was whether human operators could successfully detect the UAV

hacking events. A successful detection was indicated by a correct decision for a specific

hacking event, including overriding the UAV and sending it home if the UAV was hacked

or recognizing the notification was a false alarm. Among all hacking events in both test
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sessions for each participant, 7 (4 in high task load and 3 in low task load) were pre-defined

as false alarms, which meant the threshold for incorrect hacking notifications was 47%. As

shown in Table A.1, out of all real hacking notifications across all participants, the overall

success rate was 78%, and for the false alarms, the success rate was 84%. Thus, operators

were slightly better at detecting false alarms than identifying real hacking notifications.

When looking at each individual’s performance per test session, results showed that

23 out of total 72 experiment sessions (32%) resulted in 100% of successful hack iden-

tifications in a single test session, with another 24 (33%) above 80% successful attack

identification. Thus, 65% of total experiment sessions exhibited 80% correct hacking

detection or better without having any prior formal training. Also, for the three perfor-

mance scores of vehicle damage, the correct percentage intersection counts, and correct

percentage of hacking events, the only variable affected by task load was vehicle damage

(F(1,31) = 32.93), p < 0.001). Participants with less workload suffered less damage as

they had more time to optimize their paths and avoid hostile areas.

One result showed a significant negative correlation between the time expended in

hacking detections and correct detections (Pearson = −0.375, p = 0.001), which meant

that participants who took longer to detect the hacking events had a lower success rate in

hacking identifications. This suggests that early detection was better from the operator

standpoint. The covariate of the video game experience had a significant effect on partici-

pants’ correct hacking detections (F(1,31) = 4.652, p = 0.039). This means that the more

video game experience, the higher the chance of a correct hacking detection. Another result

showed that participants’ task inputs were effective in that the more time they navigated the

UAVs, the less time UAVs intersected with hostile areas (Pearson = −0.345, p = 0.003).

We also found that time expended in the imagery task was negatively correlated with the

percentage of correct hacking detection (Pearson = −0.275, p = 0.019). This result was

expected as participants who spent more time in counting tasks were less likely to detect

hacking events.
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While using human geo-location in UAV hacking detections, operators will compare

the non-tempered UAV camera video feed to the potentially falsified GPS location to de-

tect inconsistencies between them. After receiving a hacking notification, operators can

purposely navigate the notified UAV to some specific areas that can potentially provide

more inconsistencies to increase the confidence of making a correct decision to a hacking

event. Thus, analyzing the map usage in hacking detections will benefit the future design

of autonomous decision-supporting tools for hacking identification.

The resulting heat map represents the frequency distribution of areas of participant

interest during hacking detections and is shown in Figure A.1. Different colors represent

varying frequency of operations, including adding waypoints and switching targets for

UAVs, on a specific point. The warmer the color, the more participants interacted with a

specific point, for example, red represents 5 or 6 operations. Understanding that the density

of targets on the lower left quadrant of the map is slightly higher than other regions, this

quadrant is more attractive to operators since operators can navigate UAVs between targets

to get engaged to more imagery tasks in a shorter time range.

Landmarks used in hacking detections are classified into three categories, including

special road patterns, geographic feature transition, and special buildings, like shown in

Table A.2. Geographic feature transitions are defined as the transition between land and sea

areas, on which operators can clearly observe the sudden change of geographic patterns.

Special buildings are defined as distinctive shapes with contrastive colors that are used to

represent a single building or a group of buildings on the map. As the percentage of total

special road patterns and special buildings are approximate the same, special road patterns

are more attractive to operators.

The frequency of different landmarks used in different detection decisions was exam-

ined. In correct hacking detections with both real hacking and false alarm notifications,

the percentage of operations based on special road patterns is slightly over 60%, which

is higher than the percentage in incorrect hacking detection with real hacking notification
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Figure A.1: The heat map of reference points in UAV hacking detection.

(45.5%) and false alarm notification (56.0%). Another interesting fact is that special road

patterns lead to the highest success rate of 86.1% in hacking detections, while geographic

feature transition lead to 79.6% and special buildings lead to 80.7%. These results provide

insight for how a future advanced map-based hacking detection support tool for human

operators could be designed.

In this experiment, we analyzed if a human operator could serve as a supplementary

sensor in supervisory UAV control systems by successfully detecting UAV hacking events.
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Table A.2: The frequency of different types of landmarks used in hacking detections.

Special road

patterns

Geographic

feature transition
Special buildings

Occurrence frequency 380 152 109

Occurrence percentage 59.3% 23.7% 17.0%

Experiment results supported this hypothesis in that 65% of total experiment sessions

reached over 80% hacking detection correctness. The experiment results indicated that

some factors affected operators’ performance and operations. Given that the operator’s

video game experience significantly affected the success rate in hacking detections, future

personnel selection for supervisory control systems with human visual tasks could focus

more on the experience in similar applications or more training. Also, the result of the

negative correlation between the time expended and the success rate in hacking detection

provides implications of increasing hacking detection correctness by guiding better search

strategies and earlier detections.

The map analysis showed the heat map of participants’ preferences for hacking detec-

tion. This analysis also provided some insights on a more efficient way to utilize different

landmarks. Lastly, all these results established a baseline of performance of applying hu-

man geo-location in UAV hacking detection. Future studies will focus on how higher-level

automation or advanced decision support tools could be utilized to assist human operators

in improving the success rate of hacking identifications.
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Appendix B

Appendix – The 2nd RESCHU-SA Experiment

This appendix describes the second RESCHU-SA experiment, which is Sessions 3 and

4 in Figure 4.1. Similar to the first RESCHU-SA experiment, this experiment was also

conducted on the RESCHU-SA interface as shown in Figure 3.8. This experiment was

designed to examine if extra hacking detection supports, such as a decision support system

and an additional training, could increase the success rate of UAV hacking detection and

reduce inefficiencies in participants’ detection strategies.

B.1 Experiment Settings

The RESCHU-SA experiment platform [104] was also utilized in this experiment to study

human operators’ performance and strategies in controlling multiple UAVs. Like the first

RESCHU-SA experiment, participants in this experiment experienced a similar experi-

mental procedure with two experiment sessions, as shown in Sessions 3 and 4 in Figure

4.1. In experiment sessions, participants focused on three major tasks, including the UAV

navigation task, the imagery analysis task, and the UAV hacking detection task. With a

special focus on the hacking detection task, we tried to answer the research question that

if extra hacking detection supports could benefit human operators in increasing hacking

detection success rate and reducing potential inefficiencies in detection strategies.

The experiment settings is shown in Table B.1. Forty-five participants were recruited

and randomly assigned to three different experimental groups. All participants experienced

two experiment sessions with a constant task load of managing five UAVs with eight targets

and eight hacking events, including four real hackings and four false alarms. No additional

support was provided in the first experiment session. However, different supports were
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provided in the second session based on different experimental groups shown in Table

B.1. Specifically, participants’ hacking detection actions were collected, and their detec-

tion strategies were inferred in the first session. Participants’ strategies were categorized

into either waypoint-oriented or target-oriented strategies, which were determined in the

first RESCHU-SA experiment and shown in Figure 2.7 and Table 2.3. Then in the second

session, participants received extra supports with different focuses based on the category

of their hacking detection strategies.

Table B.1: Different extra supports based on different experimental groups.

Group 1 Group 2 Group 3

Participants 15 15 15

The first session No extra support No extra support No extra support

The second

session

Decision support

system only

Detection strategy

training only
Both

The decision support system provides either suggested locations for adding waypoints

or suggested targets for switching assigned targets based on participants’ strategy cate-

gories. Once a hacking notification pop-up window appears on the interface, a suggestion

dialog box also appears simultaneously, providing a waypoint or target suggestion with two

options of accepting or rejecting the suggestion. An example of two types of suggestion

boxes is shown in Figure B.1. The waypoint-oriented system provides a suggested way-

point, which is highlighted in green in Figure B.1a. If participants accept the suggestion,

a waypoint will be automatically added for the notified UAV, and the UAV will change its

direction to the newly added waypoint. The target-oriented system provides a suggested

target, which is indicated by a green arrow in Figure B.1b. If participants accept the sug-

gestion, the target of the notified UAV will be switched to the suggested target, and the
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UAV will approach the newly assigned target. The suggestions from the decision support

system are determined based on 1) the distance between the notified UAV and heat map

hot spots shown in Figure A.1, 2) detection success rates of surrounding hot spots, and 3)

the number of UAVs waiting to engage to imagery tasks. Also, operators could manipulate

suggested waypoints or targets after accepting the suggestion.

(a) (b)

Figure B.1: Examples of the decision support system. (a) The waypoint-oriented sugges-

tion. (b) The target-oriented suggestion.

Another extra support, the additional hacking detection strategy training, was provided

between the first and the second experiment session. Participants received this training

with emphases on either waypoint- or target-oriented hacking detection strategies for the

second session. Participants received different types of training based on their detection

behavior patterns inferred in the first session.

As an example, if a participant revealed to have a proactive waypoint-oriented detec-

tion strategy in the first session, then before the second scenario, the participant would be

trained by the waypoint strategy. Such a strategy requires operators to proactively change

UAVs’ trajectory after receiving hacking notifications by manipulating UAVs’ waypoints

to navigate notified UAVs to obvious landmarks, which is highlighted with a red dot in

Figure B.2a as an example. If a participant tended to have a reactive target-oriented detec-
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tion strategy in the first session, the participant would be trained by the target strategy. In

this strategy, participants are required to switch the assigned target for the notified UAV to

change the UAV’s moving direction to certain obvious landmarks as highlighted with a red

circle in Figure B.2b. In general, the main purpose of providing strategy training is to guide

operators to specific strategies to simplify their behavior patterns in hacking detections to

save their cognitive resources.

(a) (b)

Figure B.2: Examples of the detection strategy training. (a) The waypoint-oriented train-

ing. (b) The target-oriented training.

Both the decision support system and the detection strategy training constructed a feed-

back loop on the experiment sessions. Firstly, operator strategy models were developed

from the first RESCHU-SA experiment, and operation flows were observed from the strat-

egy models. Potential inefficiencies were also observed in the first experiment strategy

models that participants revealed to conduct repeated actions. Then, such operation flows

were utilized in the second experiment to assist operators in hacking detections by re-

ducing repeated actions and enhancing strategy adherence. The decision support system

assists operators in reducing operators’ extra efforts by providing suggestions of human

geo-location tasks for hacking detections and automatically applying such suggestions.

And the detection strategy training assists operators in guiding them to a specific strategy

observed from the first-stage models in hacking detection.
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B.2 Experiment Results

The hypotheses of this experiment include 1) both types of additional supports in the sec-

ond experiment session can improve operators’ success rate in hacking detection compared

to the first session, 2) the decision support system can reduce the inefficiency of manipu-

lating UAVs’ trajectory in hacking detection actions, and 3) the detection strategy training

can enhance the adherence of operators’ detection strategies to known strategies.

The distribution of the strategies utilized in additional supports was uneven in that

most participants received hacking detection supports with the proactive waypoint-oriented

strategy instead of the reactive strategy. Considering additional supports embedded with

detection strategies that operators tended to have in the first session, most participants re-

vealed to have the proactive strategy. In this case, different strategies in additional supports

were not considered in statistical analyses. To investigate the first hypothesis, a repeated-

measure multi-variate ANOVA model was developed to explain the potential effects of the

additional supports on operators’ performance in hacking detections.

The statistical analysis results from the ANOVA model showed that additional supports

provided in the second experiment session increased participants’ UAV hacking detection

success rate (F(1,43) = 6.003, p = 0.019). The boxplots of the success rates based on

different experimental groups and sessions are shown in Figure B.3. For all these three

experimental groups, the medium of participants’ detection success rates in the second

session were higher than those in the first session. Especially in the second experimental

group, the medium success rate was increased from 75% to 100% by receiving the detec-

tion strategy training.

Participant strategy models, as shown in Figure B.4, were developed to describe their

hacking detection strategies and verify experiment hypotheses. Understanding that all par-

ticipants experienced the same experimental settings in the first experiment session, one

strategy model was developed across all groups for the first session as shown in Figure
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Figure B.3: Boxplots of UAV hacking detection success rates by different experimental

groups and sessions.

B.4a. For the second experiment session, three strategy models were developed for the

three experimental groups, respectively, as shown in Figures B.4b, B.4c, and B.4d.

In the second hypothesis, the decision support system provided in Groups 1 and 3 was

expected to reduce the repeated operations of manipulating UAVs’ trajectory in hacking

detections while applying human geo-location. Compared to the hacking detection model

developed from the first session, the Group 1 model and Group 3 model were expected

to significantly lower the self-transitions in UAV trajectory manipulation-related states. In

fact, participants rejected 34.6% suggestions in Groups 1 and 3, and they further modified

the suggested points after accepting the suggestions due to their preference. This can be

observed from the Group 1 model in Figure B.4b that the self-transition on the “adjust way-

point” state is 44.8%, and the “adjust target” state has a self-transition of 83.1%. Similar

high self-transitions also appear in the Group 3 model in Figure B.4d.
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(a) (b)

(c) (d)

Figure B.4: Hacking detection models. (a) The 1st session model. (b) The 2nd session

group 1 model. (c) The 2nd session group 2 model. (d) The 2nd session group 3 model.
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Based on the self-transitions shown in hacking detection models, we can conclude that

the decision support system did not reduce the inefficient operations in hacking detec-

tions. Given that the decision support system increased participants’ detection success rate

but failed to reduce inefficient operations, further studies of the system usage among par-

ticipants in Groups 1 and 3 are needed. Also, the relation between different suggestion

acceptance levels and participants’ detection success rates needs further investigations.

In the third hypothesis, the detection strategy training was expected to change opera-

tors’ strategy adherence that operators were expected to adhere to a single operational flow

in hacking detection. In the Group 2 model in Figure B.4c, the transition from the “per-

ceive hacking” state to the “adjust waypoint” state is 58.3%, which is larger than the same

transition of 49.6% in the first session model in Figure B.4a. Also, the transition from

“perceive hacking” to “support decision” reaches 86.1%, and the adjacent transition from

“support decision” to “adjust waypoint” is 74.2% in the Group 3 model. Such transitions

illustrate that participants adhered to the waypoint-oriented hacking detection strategy as

expected with the strategy training.

Based on the state transitions shown in the models, we can conclude that the detec-

tion strategy training generally enhanced the adherence of participants’ strategies to the

known waypoint-oriented strategy. As future studies, the detailed assessment of opera-

tors’ strategy adherence is necessary to quantitatively investigate the levels of adhering to

known strategies. Then, the hacking detection performance comparison among operators

with different levels of adherence can further evaluate the effectiveness of the additional

strategy training process.
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Appendix C

Appendix – The RESCHU Experiment

This appendix describes the RESCHU experiment, which was conducted on the RESCHU

interface shown in Figure 3.7. The RESCHU interface provides two major tasks for par-

ticipants, including the UAV navigation task and imagery analysis task. Compared to the

RESCHU-SA interface, the RESCHU interface is not embedded with the UAV hacking de-

tection task. This experiment was designed to evaluate the effect of increasing autonomy

and different training methods on UAV supervisory control.

C.1 Experiment Settings

With significantly increasing commercial market of unmanned aerial vehicles (UAVs), ex-

tensive UAV applications have been designed and provided for both civilian and military

realms [130]. Understanding that human operators play an important role in a common

UAV control scheme of human supervisory control (HSC) [43], many factors can poten-

tially affect human operators’ performance in UAV control scenarios, including UAV nav-

igation and high-level surveillance tasks. Considering higher-level automation was intro-

duced generally to decrease human efforts, different levels of autonomy were investigated

in this experiment that whether a higher level of autonomy would benefit operators’ per-

formance in conducting high-level UAV tasks. In addition, knowing that a more detailed

training process may result in better performance, different training processes were in-

vestigated in this experiment that how different training processes may affect operators’

performance in UAV control scenarios.

Different types and levels of automation have been introduced to most kinds of human-

machine systems by developing and utilizing computer hardware and software applications
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to reduce human efforts [146, 147]. Different levels of automation have also been intro-

duced to human supervisory UAV control systems to assist human operators in conducting

high-level tasks [133, 134, 135]. The presence of the technique of automatic target recog-

nition (ATR) is an example of utilizing higher-level automation in UAV surveillance tasks.

With the assistance of ATR, operators could spend less effort in searching and localizing

tasks meanwhile performing a high success rate. However, operators may not trust higher-

level automation in supervisory UAV controls since the automation may fail in assisting

operators in such tasks.

In addition to different LOA, the distribution of autonomous functions and the construc-

tion of collaboration should also be investigated. The SRKE (skill, rule, knowledge, exper-

tise) model provides useful implications for developing automated systems by illustrating

different information-processing behaviors [148, 149, 150, 151]. The SRKE model divides

cognitive tasks into four levels. Skill-based behaviors are highly practiced and automatic

responses to stimuli. Rule-based behaviors utilize memorized procedures based on expe-

rience or instruction in response to familiar situations. Knowledge- and expertise-based

behaviors function in novel situations where conceptual understanding of the environment

is required. Thus, different training levels may affect human operators’ performance in

conducting tasks in supervisory UAV control scenarios.

In order to investigate the effects from factors mentioned in previous sections, an ex-

periment was designed and conducted utilizing a modified version of the Research Envi-

ronment for Supervisory Control of Heterogeneous Unmanned Vehicles (RESCHU) ex-

periment platform [104]. The interface of the RESCHU platform is shown in Figure 3.7.

The interface features four main components, including the payload camera view, control

panel, mission timeline, and map area.

Thirty participants took part in this experiment, including 15 Duke undergraduate stu-

dents and 15 army personnel. The main difference between the two groups of subjects was

the level of experience of using military-related equipment. Because of the limited number
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of participants, age and gender were not investigated in this experiment. Based on the first

RESCHU-SA experiment results that operators’ video game experience may affect their

performance [128], participants’ gaming experience was collected.

The primary objectives for operators in this experiment are to control multiple UAVs:

1) perform imagery tasks of searching specific targets when UAVs reach assigned targets,

2) ensure UAVs do not encounter hazard areas. The experiment procedure consisted of

three main sections. The first section was a training section, in which subjects received

different types of training. The second section was a practice session to allow participants

to get familiar with the experiment interface. The third section was data collection with

two different scenarios.

Specifically, in the training section, two types of training processes were provided for

different groups of participants. The first type was the rule-based training, in which sub-

jects would go over the self-paced tutorial training slides and ask questions to experi-

menters. In the rule-based training, participants would learn the experiment objectives and

basic operations on the experiment interface. The second training type was a combination

of skill- and rule-based training, in which subjects received a specific practice of aiming

targets on screen followed with the training tutorial slide. The aiming target practice was

considered as skill-based training because it would potentially decrease participants’ reac-

tion time and increasing the success rate of searching targets via camera video feed.

In the data collection section, which was also the experiment section, each subject

had two different scenarios with different imagery searching tasks. The number of UAVs,

targets, and hazard areas for different scenarios remained the same. Thus, the taskload of

different scenarios was similar. However, the images used in searching tasks were different

in that these images were assigned to each scenario based on a specific sequence. The

main purpose of setting different scenarios was to investigate the order effect that whether

subjects would perform better in the second scenario.

The assistance of the automation target recognition (ATR) in imagery searching tasks
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was also introduced in experiment sessions as increasing autonomy. The assistance of the

ATR was presented as where the automation believed the target was located. With the

assistance of the ATR, the target would appear in the range of the original camera video

feed without participants moving or zooming the view. In this case, participants with the

assistance of ATR could easily locate where the targets were in imagery searching tasks.

However, ATR was designed to have only a 70% probability of successfully assisting in

imagery tasks, so ATR might work properly or fail. For participants without the assis-

tance of ATR would be responsible for controlling the camera view to search the target by

panning and zooming the camera view.

C.2 Experiment Results

Based on the experiment design mentioned in the previous section, participants were as-

signed to different groups to received different experimental treatments, as shown in Table

C.1.

Table C.1: Different participant groups with different experiment treatments.

Group 1 Group 2 Group 3

Skill- and

rule-based training

with ATR

Skill- and

rule-based training

without ATR

Rule-based training

only with ATR

Army personnel

(participants)
5 5 5

Duke students

(participants)
5 5 5
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Thus, independent experiment variables can be summarized as 1) scenarios, 2) partic-

ipant occupation, 3) participant group. And dependent variables can be summarized as

1) the number of hazard areas incurred, 2) the average time expended in hazard areas, 3)

the success rate of conducting imagery searching tasks, 4) the average time expended in

imagery searching tasks, 5) the average waiting time for UAVs to engage to imagery tasks,

6) the success rate of imagery tasks with or without the assistance of ATR. A covariate is

1) participants’ video game experience.

A multivariate repeated-measure ANOVA model (rm-MANOVA) with a significance

level of 0.05 was used for statistical analyses. Multicollinearity can be avoided in that three

independent variables were designed by experimenters, and these variables were crossed

to each other. Also, participants were assigned to different experimental groups evenly

and randomly. Thus, participants’ video game experience was independent of three major

independent variables.

A significant interaction between scenario and different participant groups on the suc-

cess rate of imagery tasks was presented (F(0.95;2,23) = 5.644, p = 0.010, power =

0.810). As shown in Figure C.1, participants in Groups 1 and 3 (both groups had the

assistance of ATR) had a higher success rate in imagery searching tasks in the second sce-

nario than the first scenario. However, participants in Group 2 without the assistance of

ATR had similar correctness in imagery tasks in both scenarios. The scenario, as a within-

subject factor, had an overall significant effect on the task correctness (F(0.95;1,23) =

8.752, p = 0.007, power = 0.809). Considering the main difference between Group 2 and

Groups 1 and 3 was the presence of ATR, this result suggests a training effect occurred in

experimental groups with the assistance of ATR.

In Groups 1 and 3, participants had the first experiment session as a knowledge-based

training to get more familiar with utilizing ATR in searching tasks so that their success rates

of searching targets were increased in the second scenario. However, in Group 2, partici-

pants without the assistance of ATR did not present the training effect that their searching
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(a) (b)

Figure C.1: The interaction between scenario and participant groups on the imagery task

success rate. (a) Line plots based on scenarios and groups. (b) Corresponding boxplots.

tasks success rate was similar in both scenarios. This fact indicates that conducting such

imagery searching tasks was difficult to practice without any autonomy assistance.

Another potential training effect was indicated via the slight decrease in the number of

hazard area incursions in the second scenario. As shown in Figure C.2, different scenarios

affected the number of hazard area incursions (F(0.95;1,23) = 7.424, p = 0.012, power =

0.742). Although the power value is slightly less than 0.8, this result still provides some

implications that the more experience of interacting with RESCHU interface participants

had, the less likely they would navigate UAVs to encounter hazard areas. Also, since each

experiment session only lasted 15 minutes, the time duration of a single experiment session

maybe not enough for participants to practice. Thus, the training effect on UAV navigation

was not significant.

Interestingly, participants’ video game experience as a covariate did not have any sig-

nificant interaction with other independent variables and did not significantly affect any

dependent variables. Thus, this result indicates that participants’ video game experience

would not benefit their performance in visual searching tasks. Additionally, participant
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(a) (b)

Figure C.2: The training effect on the number of hazard area incursions. (a) Boxplots

based on scenarios. (b) Corresponding detailed boxplots based on groups.

type as an independent variable did not interact with other independent variables and did

not have a significant effect on all dependent variables. This result shows that experience

in using military equipment would not benefit army personnel’s performance in both visual

searching tasks and UAV navigation since both army personnel and Duke students had a

similar overall performance.

Participants assigned to different groups received different training processes and dif-

ferent autonomy assistance in imagery searching tasks. Data analyses show that partici-

pant group as an independent variable had significant effect on the average time expended

in imagery searching tasks (F(0.95;2,23) = 10.901, p < 0.001, power = 0.981), and the

average imagery task waiting time (F(0.95;2,23) = 7.539, p = 0.003, power = 0.912).

Focusing on the average time expended in imagery tasks, participants in Group 2 spent

significantly more time than Groups 1 and 3. A Bonferroni pairwise comparison with a

family-wise error rate of 0.05/3 = 0.017 was conducted. The results show a moderate

but not significant difference in the average time consumption between Groups 1 and 2

(p = 0.027), and a significant difference between Groups 2 and 3 (p < 0.001). This result
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states that participants who received the assistance of ATR in imagery tasks (Groups 1 and

3) spent less time than participants without the assistance of ATR.

Similarly, the presence of ATR also significantly affected the average task waiting time.

The Bonferroni pairwise comparison results showed that participants in Group 1 spent sig-

nificantly less time in waiting than Group 2 (p = 0.006), and participants in Group 3 also

spent less time than Group 2 (p = 0.015). This result can be explained that without the

assistance of ATR, participants spent significantly more time in searching tasks. Conse-

quently, UAVs in their sessions waited significantly longer to be engaged to imagery tasks.

Understanding that the ATR only provided a 70% success rate in imagery searching

tasks, participants who received the assistance of ATR might trust or doubt whether the

ATR provided reasonable camera view ranges for searching targets. Also, considering the

potential knowledge-based training effect on the success rate of imagery tasks on partic-

ipant Groups 1 and 3, participants’ success rate was investigated based on scenarios and

whether ATR functioned or failed. Another repeated-measure ANOVA model with a sig-

nificance level of 0.05 was used to investigate the correctness of imagery tasks in both ATR

success and failure situations. The scenario was considered as a within-subject variable,

whether ATR correctly functioned was considered as a between-subject variable, and the

only independent variable was the success rate of imagery searching tasks.

A significant interaction between scenario and ATR function situation was presented

(F(0.95;1,38) = 49.429, p < 0.001, power > 0.999). When the ATR correctly functioned

in assisting participants with searching tasks, most participants reached a 100% success

rate in both scenarios. When the ATR failed to provide appropriate suggestions, partici-

pants had a significantly better success rate in Scenario 2 than Scenario 1. This interesting

fact also suggests a potential knowledge-based training effect on conducting imagery tasks.

Interestingly, this training effect only occurred when ATR was introduced in experiment

sessions even participants were told that ATR might not function properly.

In summary, the experiment results provide insights into our initial questions with im-
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plications for future studies and applications. In summary, participants had an overall

93.0% success rate in the imagery searching task through all experiment sessions. A po-

tential knowledge-based training effect on the success rate of imagery tasks was indicated

by the significant difference between scenarios and participant groups. Participants who

received the assistance of ATR in imagery tasks had significantly higher correctness in the

second scenario. Thus, given the assistance of ATR, more practice of conducting imagery

tasks would potentially increase operators’ success rate in such searching tasks.

Understanding that ATR had a 70% probability of functioning correctly, participants

reached an overall 98.0% success rate when ATR correctly functioned in both scenarios.

The main difference in the success rate indicated by the training effect was caused by the

imagery tasks with ATR failing to function correctly. Participants had an overall 62.0%

success rate in the first scenario when ATR failed. However, their success rate increased to

97.0% in the second scenario with ATR functioned incorrectly. This significant improve-

ment indicated that both the assistance of ATR and practice are necessary for improving

performance in imagery searching tasks.

Since a significant difference in the average imagery task time consumption and the av-

erage task waiting time was presented based on the presence of ATR, the assistance of ATR

is necessary to reduce time consumption in imagery searching tasks. Thus, understanding

that time is critical in conducting such high-level UAV tasks, the introduction of a higher

level of automation is necessary for time-critical supervisory UAV control scenarios.
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