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Rethinking the maturity of artificial intelligence in safety-critical settings 
 

M.L. Cummings 
 

While artificial intelligence (AI) has recently been touted as very successful across a 
number of domains, including transportation, medical applications and digital personal 
assistants, the reality that such systems may not actually be as capable as envisioned is slowly 
creeping into the national consciousness. While AI can show up in many every day applications 
from shopping to management of home automation, it is the application of AI in safety-critical 
systems like transportation and medicine that is the most concerning since literally the incorrect 
use of AI can have deadly consequences.  

For example, in transportation settings, it has been well established that AI is unable to 
cope with unexpected poses of known objects, for example a motorcycle laying on the ground 
after an accident may not be seen as a motorcycle  (Alcorn et al. 2018). Problems with 
automotive computer vision have been cited as contributing factors in many fatal Tesla crashes 
(Crowe 2016, Lohr 2016) and the death of a pedestrian in an Uber self-driving car accident 
(Griggs and Wakabayashi 2018). Despite years of promises by many companies of full-self 
driving powered by AI, many companies have walked back their claims in attempt to recalibrate 
the public’s and funders’ expectations (Bubbers 2019, Elias 2019). 

Another major area where AI has been heralded as a success is in health care settings 
including drug discovery (Morrison 2019) as well as in radiology (Park et al. 2019, Ardila et al. 
2019). While these successes are important steps towards making AI a useful tool in aiding 
diagnostic applications, there have also been many spectacular failures. IBM’s Watson, the 
decision-making engine behind the Jeopardy AI success, has been deemed a costly and 
potentially deadly failure when extended to medical applications like cancer diagnosis 
(Strickland 2019). Alphabet’s DeepMind medical AI applications are facing similar questions 
(Lu 2019). 

In concert with public backlash over AI and privacy, as well as concerns with AI 
embedded in social media that could be manipulating people, negative sentiment is growing 
about applications of AI.  Many experts are concerned that this backlash could lead to another AI 
winter that could lead to significant distrust in legitimate AI advances and a cooling of financial 
support (Walch 2019). Given this potential outcome, it is important to step back and analyze just 
why AI is struggling to gain traction in safety-critical systems and how the roadmap to success 
would need to change to achieve positive outcomes.  

To this end this paper will first argue that, in current formulations, AI that leverages 
machine learning fundamentally lacks the ability to leverage top-down reasoning, which is a 
critical element in safety-critical systems where uncertainty can grow very quickly requiring 
adaption to unknowns. Then, this paper will explain how this lack of fundamental understanding 
combined with a lack of understanding of what constitutes maturity in AI-embedded systems has 
contributed to the potential failure of these systems. This paper concludes with recommendations 
for human-AI collaborative systems as well as paths forward to mitigate the impact of AI 
misapplications and better inform future uses.  
 

A problem of brittleness 
 

In safety-critical settings like transportation and healthcare, computer vision is a common 
application of artificial intelligence, which typically means algorithms leverage machine, 
sometimes called deep, learning to “perceive” the world in order to make decisions. For 
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example, deep learning algorithms in driverless cars determine whether a car “sees” a pedestrian 
or in healthcare, whether a tumor exists in a grainy image of a lung. While important 
advancements have been made in the last 10 years in computer vision and in the deep learning 
algorithms that underpin these systems, such approaches to developing perceptual models of the 
real world are plagued by problems of brittleness. 

Brittleness occurs when any algorithm cannot generalize or adapt to conditions outside a 
narrow set of assumptions. For example, many natural language processing algorithms are brittle 
when they can understand a person from New York City but fail to understand the same sentence 
from someone in Appalachia or who speaks English with a foreign accent (Harwell 2018). While 
this brittleness may be frustrating for a person attempting to navigate a phone tree, it can be 
deadly in a safety-critical system that relies on any kind of machine learning for perception or 
critical reasoning.  

The source of this perceptual brittleness comes from the fact that machine learning 
algorithms do not actually learn to perceive the world in a way that can generalize in the face of 
uncertainty. For example, computer vision machine learning algorithms typically rely on edge 
detection to decompose an image through mathematical computations to identify transitions 
between dark and light colors. These transition points then become a set of line segments, hence 
the term edges. Figure 1 is an example of how a picture can be decomposed into its edges. So, 
while humans see a tiger, a deep learning algorithm “sees” sets of lines in various clusters. 

For a machine learning algorithm to “learn” to recognize a tiger, it must “see” tens of 
thousands of similar images in order to understand patterns of reoccurrence. Such patterns 
ideally scale spatially so that even potentially at different distances and angles, the object can be 
successfully detected. What the algorithm has “learned” is that a particular set of mathematical 
relationships belong together as a label for a particular object. Once an algorithm can classify an 
object correctly, it can invoke a set of rules for how to treat that object, i.e., if in a car and a tiger 
(or any other animal) is in the car’s path, then the car should stop. 

 

 
Algorithm brittleness occurs when the environment changes in such a way that the 

computer vision algorithm can no longer recognize the object due to some small perturbation. 
Recognizing animals like tigers in images has been dramatically improving due to machine 

Figure 1: Edge decomposition example, courtesy of Wessam Bahnassi [Public domain] 



 3 

learning research but images with multiple species and unusual 
behaviors can cause problems for identification (Norouzzadeh 
et al. 2017). 

Such problems are also seen in safety-critical settings 
like driving. Brittleness for driverless car computer vision 
includes an inability to cope with changes caused by weather 
conditions. Lane markings that are partially covered by snow 
cause problems because the edges no longer match the system’s 
internal model (Krishner 2019). Even on sunny days, when a 
tree branch or other vegetation partially obscures just a traffic 
sign, what is obvious to a human becomes impossible to 
interpret for a computer vision algorithm (Lewis 2019). 

A common response to such brittleness is for engineers 
and computer scientists to gather more data in order to fill what 
is thought to be a perceptual gap. For example, to fix the 
vegetation-obscuring-a-sign problem, many engineers will say 
“We just need more examples to train the algorithm to correctly recognize this condition.” While 
that is one answer, it begs the questions as to how much of this finger-in-the-dyke engineering is 
practical or even possible? Every time a new sensor is created (like a new LIDAR (Light 
Detection And Ranging) sensor and every time this sensor experiences a new set of conditions it 
has not yet seen, it has to be trained with a significant amount of data that may have to be 
collected. The workload to do this is extremely high, which is one reason why there is such a 
talent drain caused by the current driverless car space race. All this intense effort that has a 
significant cost is occurring for systems with significant vulnerabilities. 

Because computer vision based on deep learning is still a relatively new area of research, 
new problems are coming to light in university laboratories. Researchers have only recently 
uncovered that neural nets are not capturing accurate depth information in images (Dijk and 
Croon 2019), which can have significant safety implications. A relatively new field of study has 
emerged in the past few years called adversarial machine learning, which examines how systems 
that leverage versions of deep learning algorithms can be tricked or defeated.  

Progress in adversarial machine learning has been eye-opening as one set of researchers 
demonstrated that putting four innocuous black and white stickers on a stop sign could trick a 
computer vision algorithm to see a 45mph speed limit sign (Evtimov et al. 2017). Another set of 
researchers then went on to show only a single pixel needed to be changed to cause such an 
algorithm to mislabel an object (Su, Vargas, and Sakurai 2019). These recent efforts show just 
how vulnerable these machine learning-based approaches are in computer vision applications, 
and ultimately how nascent this field actually is. 

 
Bottom-up versus top-down reasoning 
 

 A fundamental issue with machine learning algorithm brittleness is the notion of bottom-
up versus top-down reasoning, which is a basic cognitive science construct. It is theorized that 
when humans process information about the world around them, they use two basic approaches 
to making sense of the world: bottom-up and top-down reasoning. Bottom-up reasoning occurs 
when information is taken in at the sensor level, i.e., the eyes, the ears, the sense of touch, etc., to 
build a model of the world we are in. Top-down reasoning occurs when perception is driven by 
cognition expectations. These two forms of reasoning are not mutually exclusive as we use our 

Figure 2. The Kanizsa 
Triangle Visual Illusion 



 4 

sensors to gather information about the world, but often apply top-down reasoning to fill in the 
gap for information that may not be known.  
 For example, in the case of a lane marking covered by snow, we leverage bottom-up 
reasoning to see the snow and partially covered lines but we use top-down reasoning to infer 
where the line would be even if we can’t see all of it. We do not need perfect information in the 
world because our ability to fill in missing information from experience and abstract reasoning 
happens almost instantly with little to no previous experience (and certainly not requiring tens of 
thousands of examples to make such an educated guess.)  

Our ability to infer relationships from partial information is captured visually by the 
Kanizsa triangle in Figure 2. A computer vision algorithm would learn that this image has three 
equally-spaced Vs with three alternately spaced circles, each missing a one-sixth piece. Such 
deconstruction is effectively bottom-up reasoning. However, because of experience and 
expectation, most humans will see two triangles superimposed over one another, an example of 
top-down reasoning. While the label triangle could be assigned to this image (by a human 
programmer) as well as thousands of other similar images in an attempt to teach a computer what 
such abstractions mean, up to this point in time, machine learning algorithms have been 
unsuccessful at both recognizing and creating visual illusions (Williams and Yampolskiy 2018). 

While there has been success of using machine learning in limited vision contexts, such 
algorithms effectively only apply only half of the reasoning needed to solve complex problems - 
the bottom-up construction of individual pieces of data. Deep learning algorithms are actually 
quite shallow in that while they can detect patterns, they lack any sense of causality which is 
critical for understanding what to do in novel situations 

What is missing is the ability to consistently consider context as well lower the 
uncertainty due to missing or degraded pieces of information, which are the missing pieces that 
knowledge and expert-based reasoning apply. The lack of machine learning (ML) top-down 
reasoning in perceptual tasks is why computer vision algorithms struggle with labeling 
unexpected images in transportation settings (Alcorn et al. 2018) and fail in radiology 
applications (Hosny et al. 2018).  

To illustrate how and why both bottom-up and top-down reasoning are needed for 
complex decision making, Figure 3 depicts the kinds of reasoning needed for such a task, 
independent of who (the human and/or the computer) performs it. This SRKE (skills-rules-
knowledge-expertise) depiction (Cummings 2014) is an extension of Rasmussen’s SRK (skills, 
rules, and knowledge-based behaviors) taxonomy (Rasmussen 1983).  

Skill-based behaviors are the lowest point in the taxonomy and consist of sensory-motor 
actions that are highly automatic and typically acquired after some period of training (Rasmussen 
1983). In Figure 3, an example of skill-based control for humans is the act of keeping a car 
within lane lines, which easily becomes a highly automated skill once learned. If uncertainty is 
low at this stage, i.e., all the information is available for how to do a particular task, such 
reasoning is an ideal candidate for automation. Indeed, automated lane keeping is now a standard 
feature on many cars. 

Once a set of basic skills is acquired, like those in driving between two lane lines, 
operators can then turn their attention to higher cognitive tasks such as rule-based behaviors, 
which are effectively those actions guided by subroutines, stored rules, or procedures. For 
example, when a driver (or a computer) detects a stop sign, a set of procedures that leverage 
various skills are involved, like slowing the car down and bring the car to a stop before the sign. 
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As depicted in Figure 3, uncertainty is somewhat higher at this stage primarily due to the need to 
infer which set of stored rules or procedures is needed at a particular time or place. 

 
 

 
The next level in the SRKE taxonomy is that of knowledge-based behaviors, where 

mental models built over time aid in the formulation and selection of plans for an explicit goal 
(Rasmussen 1983). Those scenarios where knowledge-based reasoning is needed are typically 
characterized by higher uncertainty. In Figure 3, human drivers leverage knowledge-based 
reasoning when they see, for example, a partially occluded sign like a stop sign covered by 
vegetation. The entire sign is not visible, but faced with this uncertainty, drivers easily surmise 
that it is a stop sign and then they know to invoke the required rule-based reasoning as a result. 

The last behavior in the SRKE taxonomy is expertise. Figure 3 demonstrates that 
expertise must be leveraged under the highest levels of uncertainty, where decision makers find 
themselves in situations that cannot precisely be determined, with potentially many unknown 
variables. Judgment and intuition are the key expert behaviors that allow for quick assessment of 
uncertain situations, typically in a fast and frugal manner (Gigerenzer, Todd, and Group 1999). 
The expert-reasoning scenario of multiple conflicting traffic signs in Figure 3 demonstrates an 
extremely confusing and uncertain scenario, with no clear set of rules to rely upon, requiring 
significant judgment to resolve. 

As depicted in Figure 3, skill-based reasoning requires significant bottom-up processing 
of information and it is at this stage of information processing where ML-enabled computers 
perform well assuming the sensors can accurately and reliably obtain exogenous information. So, 
for situations where skill-based reasoning dominates and sensors can reliably develop world 

Figure 3:  Bottom-up and top-down reasoning in light of the Skill, Rule, Knowledge, 
Expert-based behavior taxonomy 
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models, ML-enabled systems can perform quite well. Indeed, many companies have 
demonstrated impressive self-driving scenarios under sunny conditions and well-marked roads, 
which is primarily due to low uncertainty and the ability to stay on the lower end of the SRKE 
spectrum. 

However, while the bulk of driving may reside at the low end of the SRKE taxonomy as 
pictured in Figure 3, there are occasions that require top-down reasoning which computers 
simply are currently not equipped to solve. Recently a driverless shuttle was involved in a crash 
because it could not understand the intent of a human driver of a tractor trailer ahead of it who 
very slowly backed up for more maneuvering room, expecting the shuttle to also back up (NTSB 
2019). The tractor trailer driver did not know the shuttle had no driver (nor did it have the ability 
to operate in reverse).  

The driver had an expectation built over years of experience that the other vehicle would 
give way and be able to reverse, but the shuttle had no rule set to reference. This scenario seems 
simple for human drivers who understand the need to negotiate to resolve uncertainty but such 
abstract principles and the development of alternative action plans, even simple ones, is outside 
of the realm of ML-enabled systems, at least for the foreseeable future.  

Such ambiguous situations happen regularly in the driving domain and often with much 
more dramatic and deadly consequences. There have been several incidents where Tesla drivers 
have been killed while driving on Autopilot, an automated driving assist feature, which failed to 
see objects directly in cars’ paths, and a pedestrian has been killed by an Uber self-driving car 
while undergoing human-supervised testing (Crowe 2016, Griggs and Wakabayashi 2018, Lohr 
2016). In all these cases, the skill-based reasoning automated systems that relied on bottom-up 
processing failed, and deaths occurred because the inattentive drivers did not realize these cars 
still needed their top-down reasoning and judgment. 

These examples highlight the essential need for any safety-critical system to incorporate 
both bottom-up and top-down reasoning, especially as uncertainty grows in a system. This is true 
whether such uncertainty is caused by confusing scenarios in the external environment or by 
failures in the sensors to build accurate world models. Unfortunately, because of the nascent 
nature of ML-enabled technologies and the hypercompetitive nature of Silicon Valley, it is not 
always obvious to the engineers developing these technologies that their creations may not 
adequately reason across the spectrum as pictured in Figure 3, and are too immature for 
deployment.  

The next section will discuss how companies in the past have known whether their 
technologies were mature enough for deployment and what milestones should be achieved before 
fielding a technology with embedded machine learning in an operational setting. Most start-ups 
and other Silicon Valley-based companies pride themselves on working differently and faster 
than traditional companies, but the cost of this speed and agility is that many important lessons 
that more traditional companies have learned over the years may be missed. 
 
Not all demonstrations are equal 
 

In an attempt to allow various programs across NASA the ability to accurately gauge the 
abilities of new proposed technologies in the space program, in the 1970s the Technology 
Readiness Levels (TRLs) framework was proposed. Originally 7 and now 9, as seen in Figure 4, 
the 9 TRLs qualitatively describe where a potential technology sits in relation to its maturity and 
likelihood of readiness for deployment (Hirshorn 2017). This framework allows people to 
evaluate technologies through a shared language, and has been adopted for use across the 
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Department of Defense (DOD 2017), the Department of Energy (DOE 2010), the Federal 
Highway Administration (Towery, Machek, and Thomas 2017), and many others. 

When originally conceptualized, the TRL levels focused on primarily physical systems 
that were predominantly leveraging new hardware developments. The words “model”, 
“prototype” and “component” suggest a physical item that can been touched and see. Even the 
term “breadboard” refers to a physical circuits and electronics board where initial designs were 
conceptualized. Curiously the word “software” never shows up in any of the TRL levels, despite 
the increasing prevalence of software in such complex systems. 

 The government has been broadly criticized for its lack of understanding the importance 
of software development and how a lack of explicit consideration in the systems acquisition 
process can lead to long and costly delays (McQuade et al. 2019). While it is well recognized 
that the US government needs to overhaul its software engineering practices, what is less clear is 
how the lack of understanding of software maturity complicates the overall TRL framework in 
Figure 4. Indeed, immaturity in both software testing and acquisition processes has been cited as 
major causes of delays in the Department of Defense (DOD) F-35 aircraft program. The number 
of extensive and costly delays in the program after it was deemed to have reached TRL 9, i.e., 
operational capability, suggest serious mistakes were made in assessing whether or not the whole 
system, including the software, was actually mature enough for operations (GAO 2019). 

The military is not the only entity to suffer from lapses in accurately assessing the 
readiness of new technology. In the civilian aviation world, the recent Boeing 737 MAX 
groundings are an example of what happens when immature and untested software code is 
embedded in an aircraft thought to be a physically mature platform. Because versions of the 
Boeing 737 (a TRL 9 platform) have been flying for well over 50 years, there was a cavalier 
assumption that the software code did not have to be treated as a new “component” for an 
aircraft with such a long history of physical implementation. The 737 MAX control software was 
nothing like that of older aircraft, probably at a TRL of 5-6, and not at all ready for operational 
deployment at TRL 9. Given its flight criticality, even though the airframe was thought to a be a 
more mature technology, the entire system’s TRL is was only as good as its lowest common 
denominator.  

What lessons, if any, could be learned from the government’s mistakes in developing 
new technologies that are thought to be mature, but do not account for the immaturity of 
embedded software? One study of 37 DOD weapon systems showed that a lack of technology 
maturity understanding had a statistically significant effect on schedule overruns (Katz et al. 
2015). The Government Accounting Office (GAO) has stated that risk is acceptably low for 
product development for systems at or above TRL 7 when there has been a “demonstration of a 
technology in its final form, fit, and function within a realistic environment.” (GAO 1999, 2001). 
In terms of autonomous systems that incorporate significant layers of AI, like in driverless cars, 
it is critical to further examine what it means to be in “its final form, fit, and function within a 
realistic environment.” 

When a technology is in its final form, one would expect that not only are the hardware 
elements fairly stable, but that the software code underpinning the perception, sensor fusion and 
control algorithms has also reached some measure of stability. It is not clear that in the case of 
self-driving cars that either hardware or software maturity has been reached. There is broad 
consensus across the self-driving car industry that LIDARs (LIght Detection And Ranging) are 
critical for safe operations, but the LIDAR industry is still in significant flux and many new 
types and kinds of LIDARs have recently been introduced (Lienert and Klayman 2019).  
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Changing or significantly upgrading a LIDAR has a direct impact on software stability in 
that all sensor fusion algorithms require recalibration and retraining whenever a new sensor is 
inserted into the hardware “stack” (the perception and control system of an autonomous vehicle.) 
So, if a critical hardware component is not yet stable, then it is impossible for the associated 
software to be stable. Moreover, LIDAR is not the only sensor expected to change in the near-
term as radars are also expected to undergo significant upgrades (Murray 2019) and new types of 

3D cameras are making 
their way to the market 
(Dent 2019).  

In addition to the 
GAO’s recommendation 
that for a technology to be 
in its final form, the other 
important attribute worth 
consideration is what it 
means to perform in a 
realistic environment. In 
order to reach broad market 
appeal, self-driving cars 
will need to operate in all 
weather conditions and 
under different levels of 
road quality. Self-driving 
systems, even with their 
multiple sensors and 
software advancements, still 
cannot reliably work in rain 
and snow conditions (Zang 
et al. 2019), during time of 
low sun angles (Dowling 
2019), and often where 
lines on the road are either 

non-existent or with faded paint (Sage 2016). 
While many self-driving companies have produced impressive demonstrations in places 

like Arizona and California, such limited applications and the high number of conditions in 
which they cannot currently operate suggest that these technologies are actually at TRL 6, where 
a prototype demonstration has occurred in a “relevant environment”. Indeed, the biggest 
difference in whether a technology is TRL 6 or TRL 7 is performing in a relevant versus a 
realistic environment. This one seemingly nuanced difference is easy to overlook, but could have 
many unexpected consequences when missed. 

The problems with asserting that a technology is TRL 7 when it is actually at a TRL 6, 
like that of driverless cars, can be quite dramatic. The GAO looked at military technologies that 
were assumed to be TRL 7 when in fact they were TRL 6 and found that 60% of cost growth in 
programs occurred after the technology moved into production. Typically, these programs 
declared themselves to be production-ready and operational before fully completing testing in 
realistic (as opposed to relevant) settings, and then they ultimately failed (GAO 2017). 

Figure 4: NASA Technology Readiness Levels (TRLs) 
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Rapidly moving products to production with embedded AI before they are ready has been 
a distinct trend for many Silicon Valley-backed technologies. While the Theranos debacle is 
often labeled as outright fraud, it is just an extreme example of the “fake-it-‘til-you-make-it” 
Silicon Valley culture and elements of such an attitude has occurred across numerous application 
of AI through Wizard of Oz techniques where humans pretend to be AI (Solon 2018). The “fake-
it-‘til-you-make-it” attitude is simply recognition that a technology is something less than TRL 7 
but is then advertised as more mature than it actually is. 

One of the ramifications of such a “fake-it-‘til-you-make-it” culture is inflated and 
unrealistic expectations that drive a hypercompetitive first-to-market race, which can become 
prohibitively expensive. In the case of the driverless car industry that has surpassed $100 billion 
in investment (Eisenstein 2018), it is not clear if the industry can withstand a 60% or more cost 
growth as it moves into the production phase with a significant risk of failure just as the military 
programs with similar pedigrees of claiming to be more mature than they actually are. 

 
Conclusion 
 

Artificial intelligence in the form of machine learning has the potential to transform 
elements of many safety-critical applications and offer up new forms of human-computer 
collaboration that previously were out of reach. For example, one military-sponsored project 
recently demonstrated that an AI-enabled robotic arm could assist the pilot of an airplane in non-
essential mundane tasks (Aurora Flight Sciences 2016). This is especially important since there 
is currently a global pilot shortage and so this kind of human augmentation could free co-pilots 
to take captain roles and effectively double the workforce. In a related medical example, many 
believe that the power of AI in radiology is not in the replacement of doctors but in assisting 
them in triaging images (Liew 2018). 

While AI augmentation of humans in safety-critical systems is well within reach, this 
success should not be mistaken for the ability of AI to replace humans in such systems. Such a 
step is exponential in difficulty and with the inability of machine learning, or really any form of 
AI reasoning, to replicate top-down reasoning to resolve uncertainty, AI-enabled systems should 
not be operating in safety critical systems without significant human oversight. 

To address the known gaps in the brittleness of AI, there has been recent increasing 
interest in the fusing of symbolic and connectionist approaches to AI. Symbolic AI, the more 
classic form of AI, attempts to represent abstract human knowledge through the encoding of 
facts and rules (i.e., symbols), and is commonly used in “expert” systems. Deep Blue, the IBM 
chess-playing computer that outwitted Garry Kasparov, is an example of symbolic AI. AI in the 
form of machine learning is a connectionist AI approach, which loosely mimics neural 
connections in the brain in the form of  probabilistic networks that represent information and 
simulated intelligence (Toews 2019, Marcus and Davis 2019). An AI algorithm that detects 
cancerous nodes in radiologic images, based on its training of thousands of images with such 
cancers previously labeled is an example of connectionist AI.    

Unfortunately, the fusing of symbolic and connectionist AI will not fundamentally solve 
the brittleness problem from which both approaches suffer, nor will fusing the two have any 
ability to solve the top-down reasoning issue. As per Figure 3, connectionist AI approximates 
bottom-up reasoning and symbolic approaches represent rule-based reasoning, with some 
overlap between the two.  Neither approach can handle significant uncertainty, and neither (or 
even both together) can approximate top-down reasoning, problems with context, and the need 
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for judgment under uncertainty. Real breakthroughs in AI will not be achieved until some form 
of contextual and casual-based computational approach is developed. 

Even though AI has limits, particularly in safety-critical systems with potentially deadly 
edge cases, demanding perfection could limit the benefits of developing such technology.  As in 
the case of the robot pilot arm or in the case of slow-speed driverless shuttles that operate in 
protected environments, there may be very advantageous uses of such AI-enabled systems, even 
though the technology is not flawless. This then motivates the need to develop clear criteria and 
testing protocols so that companies and governments buying or approving AI-enabled systems 
can be sure that the proposed systems are indeed at TRL 7 and capable of operating in their 
intended operational domains.  

However well-intended, companies that demonstrate their AI-enabled systems, especially 
those that operate in safety-critical settings, can almost function as if they were operational is 
simply not a high enough bar. History is replete with examples of how similar promises of 
operational readiness ended in costly system failure and these cases should serve as a cautionary 
tale to not just the driverless car community, but to all the AI researchers and practitioners that 
subscribe to the “fake-it-‘til-you make-it” mantra. 
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