

UAV Pilot Skill Development through Recurrent Training

UNIVERSITY

Office of Naval Research

Science & Technology

Songpo Li, Ph.D. and Prof. ML Cummings, Ph.D. Department of Electrical and Computer Engineering

Introduction

- There has been an increased need for skilled unmanned aerial vehicles (UAVs) pilots to cope with the rapid rise in UAV deployments for military and civil applications like infrastructure inspection.
- However, research on effective and efficient training of UAV pilots has lagged behind the demand. The increased but not well-considered onboard autonomy has added uncertainty to current training outcomes.
- To help fill this gap, this project examines the fundamental question of how UAV pilot skills develop with various training programs.

Experiment Design

In the experiment, subjects were given an inspection mission to fly a UAV in a simulated disaster response environment.

Control:

Two control modes were developed corresponding to two levels of autonomy, and their interfaces were developed separately.

- Manual control: no autonomy built in.
- Supervisory control: the subject can define a flight trajectory using waypoints and supervise the UAV execute the trajectory autonomous.

Experiment treatments:

- Two comparison groups were trained with two different training strategies.
- Subjects were trained five times during a 7-week period.
- In each week, subjects from two groups were tested to complete the mission with the supervisory control.

Simulated Disaster response environment

Experiment Design

Two control interfaces for two control modes with different levels of autonomy. (a) Manual control and (b) Supervisory control

Two comparison groups with different training strategies. SC: Supervisory Control, and MC: Manual Control

Group #	Training Week 1 Week 2 Week 3 Week 5 Week 7					Tests	Subject
	Week 1	Week 2	Week 3	Week 5	Week 7	Tests	Subject Number
Group 1	MC+SC	MC+SC	SC	SC	SC	SC	21
Group 2	SC	SC	SC	SC	SC	SC	20

Results

- (a): Success rates of two groups in each week.
- (b): Average times used to successfully complete the mission in each week with one standard deviation as the error bar.
- Subjects (Group 2) with high-level autonomy initially outperformed others (Group 1) with training of both levels of autonomy, but they were outperformed by Group 2 in the last two sessions.
- Group 1's performance was also more consistent.

Discussion and Future Work

Discussion:

- Training pilots with low- and high-levels of autonomy is beneficial over training with only the high-level autonomy. However, this benefit shows up in the later stage with extra costs.
- Selection of training strategies for a UAV agency should be based on the longand short-term costs and performance outcomes.

Future Work:

Modeling subjects' skills, cognition, and trust development processes during this recurrent training.

Acknowledgements

This study was funded by the Office of Naval Research.